Introduction to Electronic Materials and Devices

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This textbook lays out the fundamentals of electronic materials and devices on a level that is accessible to undergraduate engineering students with no prior coursework in electromagnetism and modern physics. The initial chapters present the basic concepts of waves and quantum mechanics, emphasizing the underlying physical concepts behind the properties of materials and the basic principles of device operation. Subsequent chapters focus on the fundamentals of electrons in materials, covering basic physical properties and conduction mechanisms in semiconductors and their use in diodes, transistors, and integrated circuits. The book also deals with a broader range of modern topics, including magnetic, spintronic, and superconducting materials and devices, optoelectronic and photonic devices, as well as the light emitting diode, solar cells, and various types of lasers. The last chapter presents a variety of materials with specific novel applications, such as dielectric materials used in electronics and photonics, liquid crystals, and organic conductors used in video displays, and superconducting devices for quantum computing.

Clearly written with compelling illustrations and chapter-end problems, Rezende’s Introduction to Electronic Materials and Devices is the ideal accompaniment to any undergraduate program in electrical and computer engineering. Adjacent students specializing in physics or materials science will also benefit from the timely and extensive discussion of the advanced devices, materials, and applications that round out this engaging and approachable textbook.

Author(s): Sergio M. Rezende
Publisher: Springer
Year: 2022

Language: English
Pages: 525
City: Cham

Preface
About This Book
Contents
About the Author
1 Materials for Electronics
1.1 Electronics and Condensed Matter Physics
1.2 Atomic Bonding
1.3 Crystalline Materials
1.3.1 Crystal Lattices
1.3.2 Simple Crystalline Structures
1.4 Materials for Electronic Devices
1.4.1 Single Crystals
1.4.2 Ceramics and Glasses
1.4.3 Polymers
1.4.4 Liquid Crystals
1.4.5 Thin Films and Multilayers
1.4.6 Graphene, Carbon Nanotubes, and 2D Materials
Further Reading
2 Waves and Particles in Matter
2.1 Electromagnetic Waves
2.2 Elastic Waves in Solids
2.3 Photoelectric Effect: Waves and Particles
2.4 The Electron as a Wave: Uncertainty Principle
2.5 Phonons and Other Elementary Excitations in Solids
Further Reading
3 Quantum Mechanics: Electrons in the Atom
3.1 The Postulates of Quantum Mechanics
3.1.1 The Wave Function
3.1.2 Quantum Operators
3.1.3 Expectation Value of a Quantity
3.1.4 The Schrödinger Equation
3.2 The Time-Independent Schrödinger Equation
3.3 Simple Applications of Quantum Mechanics
3.3.1 Free Electron
3.3.2 Particle in an Infinite Square-Well Potential
3.3.3 Potential Barrier: Tunnel Effect
3.4 Electron in the Hydrogen Atom
3.5 Atoms with Many Electrons
Further Reading
4 Electrons in Crystals
4.1 Energy Bands in Crystals
4.2 Conductors, Insulators and Semiconductors
4.3 Effective Mass
4.4 Electron Behavior at T > 0: The Fermi-Dirac Distribution
4.5 The Mechanism of Electric Current in Metals
Further Reading
5 Semiconductor Materials
5.1 Semiconductors
5.2 Electrons and Holes in Intrinsic Semiconductors
5.2.1 Effective Mass of Electrons and Holes
5.2.2 Creation and Recombination of Electron-Hole Pairs
5.2.3 Concentrations of Carriers in Thermal Equilibrium
5.3 Extrinsic Semiconductors
5.3.1 Impurity Energy Levels in a Crystal
5.3.2 Carrier Concentrations in Extrinsic Semiconductors
5.4 Dynamics of Electron and Holes in Semiconductors
5.4.1 Conduction Current
5.4.2 Motion in a Magnetic Field: Hall Effect
5.4.3 Diffusion Current
5.4.4 Injection of Carriers: Diffusion with Recombination
Further Reading
6 Semiconductor Devices: Diodes
6.1 The p-n Junction
6.1.1 Fabrication of p-n Junctions
6.1.2 The Potential Barrier at the p-n Junction
6.1.3 Charge and Field at the Junction in Equilibrium
6.2 Current in the Biased Junction: I-V Characteristics
6.3 Heterojunctions
6.3.1 Metal-Semiconductor Junction
6.3.2 Heterojunctions of Semiconductors
6.4 The Junction Diode
6.4.1 Applications of Diodes
6.5 Schottky Barrier Diode
6.6 Breakdown in Reverse Bias: Zener Diode
6.7 Other Types of Diodes
6.7.1 Varactor
6.7.2 Tunnel Diode
6.7.3 IMPATT Diode
6.7.4 Gunn Diode
Further Reading
7 Transistors and Other Semiconductor-Based Devices
7.1 The Transistor
7.2 The Bipolar Transistor
7.3 Currents in the Bipolar Transistor
7.3.1 Calculation of Currents in the One-Dimensional Model
7.3.2 Base Current and Transistor Parameters
7.3.3 The I-V Characteristic Curves
7.4 Applications of Transistors
7.5 Field-Effect Transistors
7.5.1 The Junction Field-Effect Transistor
7.5.2 The I-V Characteristics of the JFET
7.5.3 The Metal-Semiconductor Field-Effect Transistor
7.6 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
7.6.1 The MOS Capacitor
7.6.2 The Threshold Inversion Voltage
7.6.3 The I-V Characteristics of the MOSFET
7.6.4 Applications of MOSFETs
7.7 Power Control Devices: Thyristors
7.7.1 The Silicon-Controlled Rectifier- SCR
7.7.2 The TRIAC
7.8 Integrated Circuits
7.8.1 Basic Concepts and Manufacturing Techniques
7.8.2 Semiconductor Memory Devices
Further Reading
8 Optoelectronic Materials and Devices
8.1 Optical Properties of Materials
8.1.1 Electromagnetic Waves in Materials
8.1.2 Reflectivity of Materials
8.2 Interaction of Radiation with Matter: Classical Model
8.2.1 Contribution of Free Electrons in Metals
8.2.2 Contribution of Bound Electrons
8.3 Quantum Theory of the Radiation-Matter Interaction
8.3.1 Transitions Between Discrete Levels
8.3.2 Light Absorption and Luminescence
8.3.3 Absorption and Emission of Light in Insulators and Semiconductors
8.3.4 Absorption and Emission of Light in Crystals with Impurities
8.4 Photodetectors
8.4.1 Photoresistors
8.4.2 Photodiodes
8.4.3 Solar Cells
8.4.4 CCD Image Sensor
8.5 Light Emitting Diodes (LED)
8.6 Stimulated Emission and Lasers
8.6.1 The Mechanism of Amplification by Stimulated Emission
8.6.2 Solid-State Lasers
8.6.3 Gas Lasers
8.7 Semiconductor Lasers
8.7.1 The p-n Junction Diode Laser
8.7.2 Heterojunctions Lasers
8.7.3 Quantum-Well and Quantum-Cascade Lasers
8.8 Some Applications of Semiconductor Lasers and Other Types of Lasers
8.8.1 Optical Communications
8.8.2 Recording and Playback on Compact Discs
8.8.3 Other Types of Lasers
Further Reading
9 Magnetism, Magnetic Materials, and Devices
9.1 Magnetism and Magnetic Materials
9.2 Magnetic Properties of Materials
9.2.1 Origin of the Magnetic Moment of Electrons
9.2.2 Magnetic Moment of Atoms and Ions
9.2.3 Paramagnetism
9.3 Magnetic Materials
9.3.1 Spontaneous Magnetization and Curie Temperature
9.3.2 The Molecular Field Model
9.3.3 The Exchange Interaction
9.3.4 Ferrimagnetic Materials and Ferrites
9.3.5 Magnetization Curve: Magnetic Domains
9.4 Materials for Conventional Applications
9.4.1 Permanent Magnets
9.4.2 High Permeability Materials
9.5 Magnetic Recording
9.5.1 Basic Concepts
9.5.2 Quantitative Analysis of Magnetic Recording
9.5.3 Materials for Recording
9.5.4 Spintronic Technologies for Magnetic Memories
9.6 Magnetic Devices for Microwave Circuits
9.6.1 The Magnetization Precession Motion
9.6.2 Dynamic Susceptibility of Ferrites
9.6.3 Electromagnetic Waves in Ferrites
9.6.4 Microwave Ferrite Devices
9.7 Magnonics: Concepts and Perspectives for Device Applications
Further Reading
10 Other Important Materials for Electronics
10.1 Dielectric Materials
10.1.1 Polarization of Materials
10.1.2 Capacitors
10.1.3 Piezoelectric Materials
10.1.4 Ferroelectric Materials
10.1.5 Electrets
10.2 Dielectric Materials for Optoelectronics and Photonics
10.2.1 Electro-optic and Elasto-optic Effects
10.2.2 Nonlinear Optical Materials
10.2.3 Electro-optical Waveguide Devices
10.3 Materials for Video Displays
10.3.1 Phosphorescent Ceramic Materials
10.3.2 Liquid Crystals
10.3.3 Organic Conducting Materials
10.3.4 Touch-Sensitive Screens
10.4 Superconducting Materials
10.4.1 Magnetic Properties of Superconductors
10.4.2 The Physics of Superconductivity
10.4.3 Junctions with Superconductors
10.4.4 Some Established Applications of Superconductors
10.4.5 Superconducting Devices for Quantum Computing
Further Reading
Appendix A
Perturbation Theory
Calculation of the Transition Probability
Appendix B
Physical Constants and Table for Conversion of Energy Units
Appendix C
Periodic Table of the Elements
Index