International Tables for Crystallography Volume C: Mathematical, physical and chemical tables

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Volume C provides the mathematical, physical and chemical information needed for experimental studies in structural crystallography. The volume covers all aspects of experimental techniques, using all three principal radiation types, from the selection and mounting of crystals and production of radiation, through data collection and analysis, to interpretation of results. It is an essential source of information for all workers using crystallographic techniques in physics, chemistry, materials science, metallurgy, earth sciences and molecular biology.

Author(s): E. Prince (Ed.)
Series: IUCr Series. International Tables of Crystallography
Edition: 4
Publisher: Wiley
Year: 2006

Language: English
Commentary: Слой OCR присутсвует, но повреждён уже в исходных файлах. В некоторых главах таблицы вставлены сканированными рисунками в исходных файлах.
Pages: 1000
Tags: crystallography

Contents
Preface to the third edition
1.1. Summary of general formulae
1.2. Application to the crystal systems
1.3. Twinning
1.4. Arithmetic crystal classes and symmorphic space groups
References, Chapter 1
2.1. Classification of experimental techniques
2.2. Single-crystal X-ray techniques
2.3. Powder and related techniques: X-ray techniques
2.4. Powder and related techniques: electron and neutron techniques
2.5. Energy-dispersive techniques
2.6. Small-angle techniques
2.7. Topography
2.8. Neutron diffraction topography
2.9 Neutron reflectometry
References, Chapter 2
3.1. Preparation, selection, and investigation of specimens
3.2. Determination of the density of soilds
3.3. Mounting and setting of specimens for X-ray crystallographic studies
3.6. Specimens for neutron diffraction
References, Chapter 3
4.1. Radiations used in crystallography
4.2. X-rays
4.3. Electron diffraction
4.4. Neutron techniques
References, Chapter 4
5.1. Introduction
5.2. X-ray diffraction methods: polycristalline
5.3. X-ray diffraction methods: single crystal
5.4. Electron-diffraction methods
5.5. Neutron methods
References, Chapter 5
6.1. Intensity of diffracted intensities
6.2. Trigonometric intensity factors
6.3. X-ray absorption
6.4. The flow of radiation in a real crystal
References, Chapter 6
7.1. Detectors for X-rays
7.2. Detectors for electrons
7.3. Thermal neutron detection
7.4. Correction of systematic errors
7.5. Statistical fluctuations
References, Chapter 7
8.1. Least squares
8.2. Other refinement methods
8.3. Constrains and restrains in refinement
8.4. Statistical significance tests
8.5. Detection and treatment of systematic error
8.6. The Rietveld method
8.7. Analysis of charge and spin densities
8.8. Accurate structure-factor determination with electron diffraction
References, Chapter 8
9.1. Sphere packings and packings of ellipsoids
9.2. Layer stacking
9.3. Typical interatomic distances: metals and alloys
9.4. Typical interatomic distances: inorganic compounds
9.5. Typical interatomic distances: organic compounds
9.6. Typical interatomic distances: organometallic compounds and coordination complexes of the d- and f-block metals
9.7. The space-group distribution of molecular organic structures
9.8. Incommensurate and commensurate modulated structures
References, Chapter 9
10.1. Introduction
10.2. Protection from ionizing radiation
10.3. Responsible bodies
References, Chapter 10
Author Index
Subject Index