Industry 4.0, China 2025, IoT: The Hype Around the World of Automation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The book gives an overview about automation technology over the last 50 years, based on my own experiences. It is a good summery for automation since 1970 for all who want to know about the context of automation developments and their standards. It is a fundamental summery and enables the reader to get experience in the complex field of automation.

In detail the question is arised, whether Industry 4.0, China 2025, IoT, AI are a revolution or more an evolution of timewise established availbale technologies in HW, SW and algorithms.  Is the hype about Industry 4.0 justified or not?

In that context a timelline since 1970 ist shown for AI, ANN, essential milestones in automation, e.g OSI-model, automation pyramid, standards for bus systems,  main SW-languages, robots, AI, ANN, pattern recognittion, Ethernet, the 12 most important international field busses, their main features and characterisitcs, foundation of committees, harmonization and standardization efforts, OPC UA and cloud computing, field devices, PLCs, SCADA, MES, ERP  and automation history.

All that history is seen in the context of µ-controller, DSP (Digital signal processor), FPGAs (Field Programmable Gate Arrays), ASICs (Application-Specific Integrated Circuit) , Chip on Board. It is include the HW-history, from Intel 8080 to octuple multicore processors. In the same way it is shown the history of field device out from laboratory into the field with all difficulties and benefits of that transition. The issues are summerized in a pyramid of complexity. Requirements for robustness and safety are shown for field devices. 

In the same way it is shown the development of mainframes, workstations and PC’s. SAP a leading ERP System  is explained in mor detail. Specially it is figured out how SAP works and what has to be considered in working with such kind of system. The differences between MES- and ERP-systems are discussed, specially also for future combined SAP/MES systems.

Explained are the problems of middlesized companies (SMEs) in dealing with Industry 4.0 and automation.

Further examples are given and discussed for automized quality control in automotvie, PCB-handling, CIGS (Solar cell)-production. Also shown is the upgrade for older products and make them ready for automation standards. In detail the history oft he modern robotics is shown for the automotive industry. In summery also is figured out the Industry 5.0 which is just coming up more and more.       


Author(s): Wolfgang Babel
Publisher: Springer
Year: 2022

Language: English
Pages: 436
City: Wiesbaden

Foreword
Acknowledgements
Contents
About the Author
Abbreviations
List of Figures
List of Tables
1: Motivation: Why This Book
References
2: Industry 4.0, China 2025, IoT (Internet of Things), AI
2.1 History of Automation
2.1.1 Industry 4.0
2.1.2 Made in China 2025 or China 2025 for Short
2.1.3 Internet of Things (IoT) or the Everything Network (Allesnetz)
2.2 Industry 4.0, Artificial Intelligence (AI), Artificial Neural Networks (ANN)
2.2.1 Pattern Recognition, Artificial Neural Networks and Polynomial Classifiers
2.2.2 Speech Recognition as a Selected Example of Applications in AI
2.3 Predictive Maintenance
2.3.1 Predictive Systems in Industry
2.3.2 Example of Predictive Maintenance for Coating Thickness Gauges
2.4 Programming Languages, Fortran, C, C++, STEP7
2.4.1 Programming Language Fortran
2.4.2 Programming Language C
2.4.3 Programming Language C++
2.4.4 STEP 7 Programming Language
2.4.5 Summary of Programming Languages
2.5 Industry 4.0, Man and Machine
References
3: Automation and Quality Control in Industry 4.0
3.1 Complexity Pyramid of Automation
3.1.1 Automation: Offline, Online, Inline
3.1.2 Electromagnetic Compatibility (EMC)
3.1.3 CE Marking
3.1.4 CE Marking and Radio Approval
3.1.5 Protection Classes IP
3.1.6 Explosive Environments ATEX, FM, IECEx
3.1.7 Functional Safety or SIL: Safety Integrity Level
References
4: Automation Pyramid and Solutions Business
4.1 Solution Business in Automation and ‘Consultative Value Selling’
4.1.1 Contract
4.1.2 Service Contract
4.1.3 Layer Thickness Measurement as an Example of Solution Selling or ‘Consultative Value Selling’ in Automation
4.2 Automation Pyramid from 1985: Industry 4.0, ‘Made in China 2025’, IoT
4.3 Enterprise Level or ERP Level (Enterprise Resource Planning)
4.3.1 SAP: An ERP Building Block of Industry 4.0
4.3.1.1 SAP Today in 2020: History
4.3.2 Personal Experience with ERP Systems
4.3.3 How SAP Works and Which Mistakes Are Often Made: Example
4.3.4 Summary ERP (SAP)
4.4 MES Operating Level (Manufacturing Execution System)
4.4.1 Functionality of the MES and Differentiation from the ERP System
4.4.2 Standardization and Association Activities for MES Systems
4.4.3 Summary MES
4.5 Process Control Level, Control Room or SCADA Level
4.5.1 History of SCADA
4.5.2 Technology
4.5.3 Summary SCADA System
4.6 PLC Level
4.6.1 History of the PLC: Programmable Logic Controller
4.6.2 PLC Technology
4.7 Field Level Sensors/Actuators
4.7.1 Development of Sensors in Analytical Measurement Technology with Regard to Automation
4.7.1.1 First Step: Solving the Humidity Problem with the pH Sensor Memosens [114]
4.7.1.2 Second Step: Integration of the Transmitter into the pH Electrode Plug-in Head [116]
4.7.1.3 Coating Thickness Measurement with Electromagnetic Tactile Methods
4.7.1.4 Layer Thickness Measurement with Photothermal Methods
4.7.2 Smart Manufacturing, Factory 4.0 in Analytical Instrumentation in 2000
References
5: Fieldbuses, Communication Protocols, User Interfaces, Hardware ASICs
5.1 Distribution of Fieldbuses, Namur Study, Requirements for Fieldbuses
5.2 Standardization of the Bus Systems
5.2.1 IEEE 802 (Institute of Electrical and Electronics Engineers)
5.2.2 Typical Network Topologies of Bus Systems
5.3 History of Fieldbuses and Bus Systems: Ethernet, HART, PROFIBUS, FF and Fieldbus Organizations
5.3.1 Advantages and Disadvantages of Field Buses
5.3.2 Bodies and Standardization of Fieldbus and Bus Systems
5.4 PROFIBUS, the Umbrella Organization, PROFIBUS and PROFINET International (PI)
5.4.1 The Different PROFIBUS Communication Protocols and Operating Software
5.4.2 Summary of Fieldbus History
5.5 FDT/DTM™ and PACTware for Control Room
5.5.1 Functionality of the FDT/DTM™ Concept
5.5.2 FDT/DTM™ Summary
5.6 The OSI Model (Open System Interconnection Model)
5.6.1 Summary OSI Model
5.7 Ethernet
5.7.1 Ethernet History
5.7.2 OSI Model and Ethernet
5.7.3 Ethernet Protocol (Data Frame)
5.7.4 CSMA/CD (Carrier Sense Multiple Access/Collision Detection) Algorithm
5.7.5 Ethernet Connections and Networking, ASICs
5.7.5.1 Connectivity of the Ethernet in the Physical Layer
5.7.5.2 10 Mbit/s Ethernet with Copper
5.7.5.3 10 Mbit/s Ethernet with Optical Fibre [163]
5.7.5.4 100 Mbit/s Ethernet with Copper
5.7.5.5 100 Mbit/s Ethernet with Fibre Optic Cable
5.7.5.6 1000 Mbit/s Ethernet or 1 Gbit/s Ethernet with Copper
5.7.5.7 1000 Mbit/s Ethernet with Fibre Optic Cable
5.7.5.8 Copper Cable CAT x
5.7.5.9 Optical Fibres
5.7.5.10 8P8C Connector and RJ45 Connector
5.7.5.11 ASIC’s Ethernet for the Bit Transmission Layer
5.7.5.12.12 Analog Devices: ADIN1300 10/100/1000 Gigabit Ethernet PHYGigabit Ethernet Transceiver [173]
5.7.5.13.13 ARM/Hilscher: NETX 52 [174]
5.7.5.14.14 MICROCHIPTechnology/Micrel: KSZ8851-16 MLL [175]
5.7.5.15.15 Texas Instruments: ASIC DP83825I Low Power [176]
5.7.6 Ethernet Future: Power over Ethernet (PoE) and Tbit/s Ethernet
5.7.6.1 Power over Ethernet (PoE)
5.7.6.2 Tbit/s Ethernet: Technology of the Future
5.8 Ethernet TCP/IP Protocol
5.9 EtherNet/IP: An Ethernet Fieldbus
5.9.1 EtherNet/IP History
5.9.2 OSI Model and EtherNet/IP, ControlNet and DeviceNet
5.9.3 Technology of EtherNet/IP and TCP/UDP
5.10 EtherCAT: An Ethernet Fieldbus
5.10.1 History EtherCAT
5.10.2 OSI Model and EtherCAT
5.10.3 EtherCAT Frame
5.10.4 Technology of the EtherCAT
5.10.5 ASIC EtherCAT from Beckhoff
5.10.6 Summary EtherCAT
5.11 PROFINET: An Ethernet Fieldbus
5.11.1 PROFINET History
5.11.2 OSI Model and PROFINET
5.11.3 PROFINET Technology
5.11.4 Summary PROFINET
5.12 CC-Link: An Ethernet Fieldbus
5.12.1 CC-Link History
5.12.2 OSI Model and CC- Link
5.12.3 The CC-Link Frame
5.12.4 CC-Link Technology
5.12.5 Example of a CC-Link Safety Application
5.13 PROFIBUS
5.13.1 PROFIBUS History
5.13.2 OSI Model and PROFIBUS
5.13.3 The PROFIBUS Protocols
5.13.4 PROFIBUS Technology
5.13.5 ASIC PROFIBUS DP
5.13.5.1 ASIC VPCLS2
5.13.5.2 ASIC VPC3 and VCP3+S [273, 274] for Low Power Range
5.13.6 Summary PROFIBUS
5.14 HART (Highway Addressable Remote Transducer)
5.14.1 History HART
5.14.2 OSI Model and HART
5.14.3 The HART Protocol
5.14.4 Technology of the HART
5.14.4.1 Data Rate
5.14.4.2 HART Point-to-Point Connection
5.14.4.3 HART Multidrop Connection
5.14.4.4 HART Multiplexing Method
5.14.5 HART Device Description DDL (Device Description Language)
5.14.6 ASIC HART Modem
5.14.6.1 HART ASIC from Analog Device Inc.
5.14.6.2 HART ASIC from MAXIM Integrated
5.14.6.3 HART ASIC from ON Semiconductor
5.14.7 Summary HART
5.15 WirelessHART
5.15.1 WirelessHART History
5.15.2 Technology of the WirelessHART
5.15.2.1 Radio Standard
5.15.2.2 Data and Interference Immunity
5.15.2.3 FHSS Method (Frequency Hopping Method)
5.15.2.4 DSSS Method Frequency Spreading Method
5.15.2.5 Mesh Network Security
5.15.3 Summary and Example of a Network Topology with WirelessHART and HART-IP
5.16 WLAN/Wi-Fi
5.16.1 WLAN/Wi-Fi History
5.16.2 OSI Model and WLAN/Wi-Fi
5.16.3 WLAN/Wi-Fi Frame
5.16.4 WLAN/Wi-Fi Technology
5.16.4.1 Future Developments
5.16.5 ASIC for WLAN/Wi-Fi
5.16.5.1 ASIC RN1810/RM1810E
5.16.5.2 Combined Wi-Fi/Bluetooth PC Plug-in Card with Intel AX200 [328]
5.16.6 Summary WLAN/Wi-Fi
5.17 Bluetooth 1.0 to Bluetooth 5
5.17.1 Bluetooth History
5.17.2 Bluetooth Layer Model
5.17.3 Bluetooth Data Packet
5.17.4 Bluetooth Technology
5.17.5 ASIC Bluetooth
5.17.6 Bluetooth Summary
5.18 Modbus
5.18.1 History Modbus
5.18.2 OSI Model and Modbus
5.18.3 Modbus Protocol
5.18.3.1 Modbus RTU Protocol
5.18.3.2 Modbus TCP Protocol
5.18.4 Summary Modbus and Personal Experiences
5.19 CAN Bus
5.19.1 CAN Bus History
5.19.2 OSI Model and CAN Bus
5.19.3 CAN Bus Frame
5.19.4 CAN Bus Technology and Interference Immunity
5.19.5 CANopen, DeviceNet
5.19.5.1 CANopen
5.19.5.2 DeviceNet
5.19.6 Summary CAN Bus
5.20 IO-Link
5.20.1 History of IO-Link
5.20.2 IO-Link Technology and Specifications
5.20.2.1 IO-Link Connection Technology
5.20.2.2 IO-Link via Single Pair Ethernet (SPE)
5.20.2.3 IO-Link Device Description
5.20.2.4 IO-Link Safety
5.20.2.5 IO-Link Wireless
5.20.3 Summary IO-Link
5.21 OPC UA (OPC Unified Architecture)
5.21.1 History OPC UA
5.21.2 OSI Model and OPC UA
5.21.3 Networking Topology of OPC UA
5.21.4 Cloud Computing
5.21.5 Example of an OPC UA Structure in the Solar Industry
5.21.5.1 SECS/GEM and Applications
5.21.5.2 CIGS Solar Cell
5.21.5.3 Process for the Production of a CIGS Solar Cell: Solution Business
5.21.6 Summary OPC UA
References
6: History of Smaller Companies Regarding Industry 4.0, China 2025, IoT
6.1 SMEs and Automation
6.2 Modernization of Older Device Generations with Regard to the Automation Interface
References
7: Automation of the Automotive Industry in Fast Motion: Robotics
7.1 History of the Automotive Industry
7.2 Robots
7.2.1 Tactile Measurement Technology and Robots
7.3 Problem of Plastic Car Bodies for Material Analysis: Solution with Terahertz
References
8: Chronology of Automation Technology Since 1970
8.1 AI, Neural Networks, Programming Languages: From Robotics to the Automation Pyramid, Fieldbuses and Committees to IoT (IIoT), Industry 4.0 As Well As ‘Made in China’
8.2 Summary of Current Events
References
Index