HEAT PIPES DESIGN, APPLICATIONS AND TECHNOLOGY

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Contents......Page 7
Preface......Page 9
Acknowledgments......Page 13
Abstract......Page 15
Nomenclature......Page 16
Subscripts......Page 18
1. Introduction and Glossary......Page 20
1.1. Closed Two-Phase Thermosyphon-Type Heat Pipe......Page 23
1.3. Heat Pipe......Page 24
1.4. Passive (or Naturally Driven) Flow and Heat Transfer Devices......Page 25
1.6. Heat Pipe Heat Exchanger......Page 26
1.7. Splashing......Page 28
1.10. Smacking......Page 30
1.11. Complexity......Page 31
2. Heat Transfer Coefficients and Maximum Heat Transfer Rate......Page 33
2.1. Ammonia-Charged Water Heated and Cooled Closed Thermosyphon......Page 35
2.2. Ammonia-Charged Steam Heated and Air-Cooled Closed Thermosyphon......Page 37
2.3. Heat Transfer Coefficients and Maximum Heat Transfer Rate for R123 and Butane......Page 44
3.1. Water-Cooled Nuclear Reactor Cooling and Heat Removal System......Page 49
3.1.1. Background Information......Page 50
3.1.3. Natural Circulation Loops......Page 55
3.1.4. Flow Instabilities......Page 58
3.1.5. Flow Pattern Characterisation......Page 61
3.1.7. Theoretical Simulation Model......Page 62
3.1.7.1. Thermal-hydraulic Theoretical Simulation Assumptions......Page 63
3.1.7.3. Conservation of Mass......Page 66
3.1.7.4. Conservation of Energy......Page 67
3.1.7.5. Conservation of Momentum......Page 71
3.1.8. Numerical Simulation Model Computer-Solution Program Algorithm......Page 74
3.1.8. Theoretical and Experimental Results......Page 83
3.2. Entirely-Passive Reactor Cavity Cooling System (RCCS)......Page 84
3.3. Entirely-Passive Spent and Used Fuel Tank Cooling System......Page 89
3.5. Steady State Natural Circulation Nuclear Reactor Cooling System......Page 91
4. Energy Saving Using Heat Pipe Heat Recovery Heat Exchangers......Page 96
4.1. Milk Spray Drying......Page 101
4.2 Mini Food Drier......Page 103
4.3. Heat Pump Drying......Page 107
4.4. Acid Pickling Process Plant......Page 110
5. Pulsating Heat Pipes......Page 111
5.1. Theory of Operation......Page 114
5.1.1. Conservation of Mass......Page 115
5.1.3. Conservation of Momentum......Page 117
5.1.5. Equation of State......Page 118
5.2. Numerical Solution Procedure......Page 119
5.3. Example......Page 120
6.1.1. Drinking Bird Water Pump......Page 123
6.1.2. Surface Tension Driven Water Pump......Page 126
6.1.3. Natural Air-Circulation Water Pump......Page 130
6.1.4. Open Oscillating Heat Pipe Water Pump......Page 133
6.2. Night-Sky Cooling and Day-Time Solar Heating System......Page 134
6.3.1. Separated Thermosyphon Heat Pipe......Page 148
6.3.2. Bent (BT) and Looped Closed Thermosyphons (CLTs)......Page 156
6.3.3. Plate and Thermosyphon Heat Transfer Comparison......Page 162
6.4. Supercritical Closed Loop Thermosyphon Heat Transfer......Page 165
References......Page 167
Abstract......Page 175
Greek Symbols......Page 176
1. Challenges of High Heat Flux Thermal Management......Page 177
2. Advanced Wick Structures Capable of High Heat Flux Phase Change......Page 179
2.1. Bi-Dispersed Porous Wick Structures......Page 180
2.2. Microfabricated Mono Wick Structures......Page 182
2.3. Multiscale Nanoporous Wick Structures......Page 188
3. High Heat Flux Phase Change Modes and Transitions......Page 192
4.1. Equilibrium of Heat and Mass Transport in Wick Structures......Page 195
4.2. Wick Geometrical Effect......Page 198
4.3. Liquid Properties Contribution......Page 202
4.4. Nanostructure Enhanced Phase Change......Page 206
5. Dryout at High Heat Flux......Page 209
References......Page 212
Abstract......Page 217
1. Introduction......Page 218
2. Heat Pipes and Thermosyphons as Thermal Management Elements. Field for Improvement......Page 221
3.1. Increasing Heat Removal Efficiency of Thermosyphons under Mechanical Stress......Page 223
3.2. Extending Service Life of Thermosyphons with Horizontal Condensation Surface......Page 226
3.3. Gravitational Heat Pipe with Threaded Capillary Structure......Page 228
3.4. Improved Designs of Heat Pipes with a Wick for the Modernized Electronic Modules......Page 229
3.5. Improved Miniature Heat Pipes......Page 230
3.7. Improving the Design of Gas-Regulated Heat Pipes......Page 232
3.8. Improving the Design of Loop Heat Pipes......Page 233
4.1. Thermal Management in Multi-Channel Secondary Power Supply Units in the Basic Supporting Structures of the Second Level with Air Cooling......Page 234
4.2. Thermal Management for Multi-Layer Ceramic Switching Circuits in the Basic Supporting Structures of the Second Level with Water Cooling......Page 235
4.3. Improved Manifold Heat Pipe for Basic Second Level Supporting Structures in the Form of Removable Electronic Modules with Water Cooling......Page 239
4.4. Basic Second-Level Supporting Structure in the Form of a Removable Unit with a Metal Plate with Built-in Evaporation Minichannels and Water Cooling......Page 240
4.5. Using HPs in Third-Level Basic Support Structures with Water Cooling......Page 241
5. Thermal Management of Mobile Infrared Devices Based on Two-Phase Technologies......Page 244
5.1. Thermal Management of Photosensitive Devices for Control Systems of Infrared Electronics Using Cryocooling......Page 245
5.2. Thermal Management of Infrared Photosensitive Devices of Medium-Temperature Range......Page 247
6.1. Thermal Management Using Two-Phase Technology and Thermoelectric Coolers for Advanced Microlaser Devices......Page 249
6.2. Thermal Management Using Two-Phase Technology and Thermoelectric Coolers for Advanced High-Power Laser Devices......Page 251
6.3. Thermal Management Using Heat Pipes and Large-Size Thermoelectric Coolers......Page 252
6.4. Improving TEC as Elements for Combined Thermal Management Devices for Electronics......Page 254
6.5. Using Gravitational Heat Pipes for Thermal Management of High-Power LED Modules......Page 255
7.1. Technological Solutions for Manufacturing Flat Finned Heat Pipes......Page 257
7.4. New Technological Solutions for Sealing Titanium Heat Pipes......Page 259
7.5. New Technological Solutions for Manufacturing Capillary Structures of Miniature Heat Pipes......Page 260
Conclusion......Page 261
References......Page 263
Abstract......Page 269
1. Introduction......Page 270
2.1. Working Fluid Physical Properties......Page 276
2.2. Binary Mixtures Phase Diagram......Page 278
3. Experimental Setup......Page 281
4. Data Reduction and Error Analysis......Page 283
5.1. Analysis of Oscillation Characteristics and Heat-Transfer Mechanisms......Page 284
5.2. Characteristics of the Local Dryout......Page 290
5.3. Variation Rules of PHP thermal Resistance to the Change of Heat Input and FRs......Page 293
6. Working Fluids and Their Properties on the PHP Performance......Page 296
6.2. Oscillation Operation and Latent Heat of Vaporization (LHV)......Page 297
6.3. Comparisons between Different Filling Ratios (FRs)......Page 298
6.4. Comparison between Different Working Fluids......Page 300
6.5. Thermal Resistance Comparison for the Working Fluids at Different Filling Ratios......Page 301
7.1. Water-Based Binary Zeotropes in PHP......Page 303
7.1.1. Small Filling Ratios (35%, 45%) and Medium Filling Ratio (55%)......Page 304
7.1.2. Large Filling Ratios (62%, 70%)......Page 308
7.1.3. Characteristics of Different Mixtures at Certain Mixing Ratio (FR = 62%)......Page 311
7.2. The PHP with Methanol-Ethanol Mixture......Page 313
Conclusions: PHP with Binary Mixtures......Page 315
Conclusion......Page 316
References......Page 317
Abstract......Page 323
Introduction......Page 324
1.1. Power Spectral Density......Page 327
1.2. Correlation Dimension......Page 328
1.3. Autocorrelation Function......Page 329
1.4. Lyapunov Exponent......Page 330
2. Volume of Fluid (VOF) Method and Governing Equations......Page 331
3. Simple Two-Dimensional Pulsating Heat Pipe......Page 334
3.1. Volume Fractions and Time Series......Page 335
3.2. Correlation Dimension......Page 344
3.3. Power Spectral Density......Page 345
3.4. Lyapunov Exponent......Page 346
3.5. Autocorrelation Function......Page 347
4.1. Volume Fractions......Page 348
4.2. Non-Linear Temperature Oscillations......Page 352
4.3. Power Spectral Density......Page 353
4.4. Correlation Dimension and Autocorrelation Function......Page 354
4.5. Thermal behavior......Page 355
5. Three-Dimensional Pulsating Heat Pipe......Page 357
5.1. Validation......Page 359
5.2. Volume Fractions......Page 360
5.3. Spectral Analysis of Time Series......Page 366
5.4. Correlation Dimension......Page 369
5.5. Autocorrelation Function......Page 370
5.6. Lyapunov Exponent......Page 371
5.7. Phase Space Reconstruction......Page 372
5.8. Thermal Performance......Page 374
Conclusion......Page 375
References......Page 376
Abstract......Page 379
Introduction......Page 380
Heat Pipes of Various Shapes......Page 385
Heat Sink-Heat Pipe Thermal Module (HSHPTM) Software......Page 390
HSHPTM Software Applications......Page 395
Conclusion......Page 403
References......Page 404
Abstract......Page 409
Heat Pipe Working Fluid/Envelope/Wick Compatibility – Life Tests......Page 410
Non-Condensable Gas Generation......Page 411
Corrosion......Page 412
Review of Previous Life Tests......Page 413
Elements......Page 414
Organic Working Fluids......Page 415
Titanium/Water and Monel/Water Life Tests......Page 419
Life Test Setup......Page 421
Life Tests......Page 423
Heat Pipe Sectioning and Analysis......Page 424
Titanium-Water Heat Pipe Cross-Sections......Page 425
Monel-Water Heat Pipe Cross-Sections......Page 426
Titanium-Halide Heat Pipe Cross-Sections......Page 427
Hastelloy C-Series Superalloy-Halide Cross-Sections......Page 428
Chemical Analysis of Working Fluids......Page 430
Conclusion......Page 432
References......Page 433
Abstract......Page 439
Introduction to Variable Conductance Heat Pipes......Page 440
Cold-Biased Reservoirs......Page 441
Warm-Reservoir Variable Conductance Heat Pipes......Page 442
Hot Reservoir VCHP with Active Control and Non-Integrated Configuration......Page 443
Warm-Reservoir VCHPs for High Altitude Balloons......Page 446
Testing Results......Page 448
Introduction to Pressure Controlled Heat Pipes......Page 450
Isothermal Furnace Liners......Page 451
Early PCHP Work......Page 452
PCHPS with Variable Reservoir Volumes......Page 453
PCHPS for Precise Temperature Control in Microgravity......Page 454
Modifications for Operation in Microgravity......Page 455
Fabrication and Testing of PCHPs Designed for Operation in Microgravity......Page 456
PCHPS with Both NCG Addition and Reservoir Volume Variation......Page 458
System Operation......Page 461
Regolith PCHP Design Constraints......Page 463
Fabrication and Testing of the Regolith Extraction System......Page 464
Conclusion......Page 468
References......Page 469
Abstract......Page 473
Introduction......Page 474
Flow Regimes in Pool Boiling......Page 475
Flow Regimes in 2-Phase Closed Thermosyphon......Page 477
Visualization of Flow Patterns in Two-Phase Closed Thermosyphon......Page 483
Loop Heat Pipes......Page 486
2 Phase Forced Convection Flows......Page 488
Vapour Chamber......Page 491
Proposed Future Studies......Page 493
References......Page 494
Index......Page 499
Blank Page......Page 2

Author(s): YUWEN ZHANG(editor)
Series: Mechanical Engineering Theory and Applications
Publisher: Nova Science Publishers, Inc. † New York
Year: 2018

Language: English
Pages: 0