Heat and mass transfer : fundamentals and applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

WATERMARKED BUT TRUE PDF

Author(s): Yunus A Çengel; Afshin Jahanshahi Ghajar
Edition: 6
Publisher: Mcgraw-Hill Education
Year: 2020

Language: English

Cover
HEAT AND MASS TRANSFER: FUNDAMENTALS & APPLICATIONS
Quotes on Ethics
ABOUT THE AUTHORS
BRIEF CONTENTS
CONTENTS
PREFACE
SUPPLEMENTS
ACKNOWLEDGMENTS
CHAPTER ONE: INTRODUCTION AND BASIC CONCEPTS
1–1 Thermodynamics and Heat Transfer
1–2 Engineering Heat Transfer
1–3 Heat and Other Forms of Energy
1–4 The First Law of Thermodynamics
1–5 Heat Transfer Mechanisms
1–6 Conduction
1–7 Convection
1–8 Radiation
1–9 Simultaneous Heat Transfer Mechanisms
1–10 Aerogel—A Remarkable Superinsulating Material
1–11 Prevention Through Design
1–12 Engineering Codes and Standards
1–13 Problem-Solving Technique
1–14 Engineering Software Packages
1–15 Accuracy, Precision, and Significant Digits
CHAPTER TWO: HEAT CONDUCTION EQUATION
2–1 Introduction
2–2 One-Dimensional Heat Conduction Equation
2–3 General Heat Conduction Equation
2–4 Boundary and Initial Conditions
2–5 Solution of Steady One-Dimensional Heat Conduction Problems
2–6 Heat Generation in a Solid
2–7 Variable Thermal Conductivity, k(T)
CHAPTER THREE: STEADY HEAT CONDUCTION
3–1 Steady Heat Conduction in Plane Walls
3–2 Thermal Contact Resistance
3–3 Generalized Thermal Resistance Networks
3–4 Heat Conduction in Cylinders and Spheres
3–5 Critical Radius of Insulation
3–6 Heat Transfer from Finned Surfaces
3–7 Bioheat Transfer Equation
3–8 Heat Transfer in Common Configurations
CHAPTER FOUR: TRANSIENT HEAT CONDUCTION
4–1 Lumped System Analysis
4–2 Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial Effects
4–3 Transient Heat Conduction in Semi-Infinite Solids
4–4 Transient Heat Conduction in Multidimensional Systems
CHAPTER FIVE: NUMERICAL METHODS IN HEAT CONDUCTION
5–1 Why Numerical Methods?
5–2 Finite Difference Formulation of Differential Equations
5–3 One-Dimensional Steady Heat Conduction
5–4 Two-Dimensional Steady Heat Conduction
5–5 Transient Heat Conduction
CHAPTER SIX: FUNDAMENTALS OF CONVECTION
6–1 Physical Mechanism of Convection
6–2 Classification of Fluid Flows
6–3 Velocity Boundary Layer
6–4 Thermal Boundary Layer
6–5 Laminar and Turbulent Flows
6–6 Heat and Momentum Transfer in Turbulent Flow
6–7 Derivation of Differential Convection Equations
6–8 Solutions of Convection Equations for a Flat Plate
6–9 Nondimensionalized Convection Equations and Similarity
6–10 Functional Forms of Friction and Convection Coefficients
6–11 Analogies Between Momentum and Heat Transfer
CHAPTER SEVEN: EXTERNAL FORCED CONVECTION
7–1 Drag and Heat Transfer in External Flow
7–2 Parallel Flow Over Flat Plates
7–3 Flow Across Cylinders and Spheres
7–4 Flow Across Tube Banks
CHAPTER EIGHT: INTERNAL FORCED CONVECTION
8–1 Introduction
8–2 Average Velocity and Temperature
8–3 The Entrance Region
8–4 General Thermal Analysis
8–5 Laminar Flow in Tubes
8–6 Turbulent Flow in Tubes
CHAPTER NINE: NATURAL CONVECTION
9–1 Physical Mechanism of Natural Convection
9–2 Equation of Motion and the Grashof Number
9–3 Natural Convection Over Surfaces
9–4 Natural Convection from Finned Surfaces and PCBs
9–5 Natural Convection Inside Enclosures
9–6 Combined Natural and Forced Convection
CHAPTER TEN: BOILING AND CONDENSATION
10–1 Boiling Heat Transfer
10–2 Pool Boiling
10–3 Flow Boiling
10–4 Condensation Heat Transfer
10–5 Film Condensation
10–6 Film Condensation Inside Horizontal Tubes
10–7 Dropwise Condensation
CHAPTER ELEVEN: HEAT EXCHANGERS
11–1 Types of Heat Exchangers
11–2 The Overall Heat Transfer Coefficient
11–3 Analysis of Heat Exchangers
11–4 The Log Mean Temperature Difference Method
11–5 The Effectiveness–NTU Method
11–6 Selection of Heat Exchangers
CHAPTER TWELVE: FUNDAMENTALS OF THERMAL RADIATION
12–1 Introduction
12–2 Thermal Radiation
12–3 Blackbody Radiation
12–4 Radiation Intensity
12–5 Radiative Properties
12–6 Atmospheric and Solar Radiation
CHAPTER THIRTEEN: RADIATION HEAT TRANSFER
13–1 The View Factor
13–2 View Factor Relations
13–3 Radiation Heat Transfer: Black Surfaces
13–4 Radiation Heat Transfer: Diffuse, Gray Surfaces
13–5 Radiation Shields and the Radiation Effects
13–6 Radiation Exchange with Emitting and Absorbing Gases
CHAPTER FOURTEEN: MASS TRANSFER
14–1 Introduction
14–2 Analogy Between Heat and Mass Transfer
14–3 Mass Diffusion
14–4 Boundary Conditions
14–5 Steady Mass Diffusion Through a Wall
14–6 Water Vapor Migration in Buildings
14–7 Transient Mass Diffusion
14–8 Diffusion in a Moving Medium
14–9 Mass Convection
14–10 Simultaneous Heat and Mass Transfer
APPENDIX 1: PROPERTY TABLES AND CHARTS (SI UNITS)
Table A–1: Molar mass, gas constant, and ideal-gas specific heats of some substances
Table A–2: Boiling and freezing point properties
Table A–3: Properties of solid metals
Table A–4: Properties of solid nonmetals
Table A–5: Properties of building materials
Table A–6: Properties of insulating materials
Table A–7: Properties of common foods
Table A–8: Properties of miscellaneous materials
Table A–9: Properties of saturated water
Table A–10: Properties of saturated refrigerant-134a
Table A–11: Properties of saturated ammonia
Table A–12: Properties of saturated propane
Table A–13: Properties of liquids
Table A–14: Properties of liquid metals
Table A–15: Properties of air at 1 atm pressure
Table A–16: Properties of gases at 1 atm pressure
Table A–17: Properties of the atmosphere at high altitude
Table A–18: Emissivities of surfaces
Table A–19: Solar radiative properties of materials
APPENDIX 2: PROPERTY TABLES AND CHARTS (ENGLISH UNITS)
Table A–1E: Molar mass, gas constant, and ideal-gas specific heats of some substances
Table A–2: Boiling and freezing point properties
Table A–3E: Properties of solid metals
Table A–4E: Properties of solid nonmentals
Table A–5E: Properties of building materials
Table A–6E: Properties of insulating materials
Table A–7E: Properties of common foods
Table A–8E: Properties of miscellaneous materials
Table A–9E: Properties of saturated water
Table A–10E: Properties of saturated refrigerant-134a
Table A–11E: Properties of saturated ammonia
Table A–12: Properties of saturated propane
Table A–13E: Properties of liquids
Table A–14E: Properties of liquid metals
Table A–15E: Properties of air at 1atm pressure
Table A–16E: Properties of gases at 1atm pressure
Table A–17E: Properties of the atmosphere at high altitude
INDEX
NOMENCLATURE
Conversion Factors