Heart Valves: From Design to Clinical Implantation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This state-of-the-art handbook is dedicated to cardiac valve anatomy, models for testing and research methods, clinical trials; and clinical needs and applications. In this new edition, chapters are updated with the latest research in addition to new chapters on complex repair of CHD requiring conduits, new trends for valve replacement like the Ozaki procedure, as well as complex procedures in TAV, SAV, HARPOON, and BASILICA, with case studies for each type of procedure. This volume serves as a helpful reference for patients, educators, students, device designers and developers, clinical study specialists, clinicians, and other associated healthcare providers.

Author(s): Paul A. Iaizzo, Tinen L. Iles, Massimo Griselli, James D. St. Louis
Edition: 2
Publisher: Springer
Year: 2023

Language: English
Pages: 619
City: Cham

Preface
Contents
Part I: Anatomy, Physiology, Congenital Defects, and Disease
Chapter 1: The Anatomy and Function of the Atrioventricular Valves
1.1 Introduction
1.2 Attitudinally Correct Anatomy
1.3 The Cardiac Skeleton
1.4 The Atrioventricular Valves
1.4.1 Atrioventricular Valve Function
1.4.2 Valve Histologies
1.5 The Mitral Valve
1.6 The Tricuspid Valve
1.7 Atrioventricular Valve Co-location with Other Cardiac Structures
1.8 Clinical Imaging of the Atrioventricular Valves
1.9 Conclusions
References
Chapter 2: The Anatomy and Function of the Semilunar Valves
2.1 Introduction
2.1.1 Historical Perspective
2.1.2 Attitudinally Correct Cardiac Anatomy
2.2 The Cardiac Skeleton
2.3 Anatomical Features of the Semilunar Valves
2.3.1 The Functioning of the Semilunar Valves
2.3.2 Histologic Features of the Semilunar Valves
2.4 The Aortic Valve
2.4.1 The Aortic Root
2.4.2 The Aortic Leaflets
2.5 The Pulmonary Valve
2.6 Semilunar Valve Co-location
2.7 Common Clinical Imaging of the Semilunar Valves
2.8 Conclusions
References
Chapter 3: Congenital Heart Defects Which Include Cardiac Valve Abnormalities
3.1 Inherited Valve Diseases
3.1.1 Aortic Valve Stenosis
3.1.2 Aortic Valve Regurgitation
3.1.3 Pulmonary Valve Stenosis
3.1.4 Pulmonary Valve Regurgitation
3.1.5 MV Stenosis
3.1.6 MV Regurgitation
3.2 Ebstein’s Malformation of the Tricuspid Valve (TV)
3.3 Atrioventricular Septal Defects (‘AV Canal’ Defects)
3.3.1 Tetralogy of Fallot
3.3.2 Truncus Arteriosus
3.4 Shone’s Complex
3.5 Congenitally Corrected Transposition of the Great Arteries (CC-TGA) with Ebstein’s Anomaly
3.5.1 Complex Left Ventricular Outflow Tract Obstruction
3.5.2 Pulmonary Stenosis with VSD
3.6 Subaortic VSD and Aortic Insufficiency
3.7 Valve Disease Late After Repair of Congenital Heart Defects
3.8 Valve Disease Related to Inherited Conditions
References
Part II: Valve Repair and Replacement
Chapter 4: Heart Valve Disease
4.1 Introduction
4.2 A New Frontier—Valve Replacement
4.2.1 Mechanical Prosthetic Valves
4.2.2 Biological Prosthetic Valves
4.2.3 Biological Versus Mechanical Valves
4.3 Specific Valvular Diseases: Etiologies and Treatments
4.3.1 Aortic Valve Disease
4.3.1.1 Aortic Stenosis
4.3.1.2 Aortic Sclerosis
4.3.1.3 Aortic Regurgitation
4.3.2 Diseases of the Mitral Valve
4.3.2.1 Mitral Stenosis
4.3.2.2 Mitral Regurgitation
4.3.3 Tricuspid Valve Disease
4.4 Summary
References
Chapter 5: History of Heart Valve Repair
5.1 Introduction
5.2 Brunton’s Era (1897–1922): Thinking About Valve Repair
5.3 The First Successful Valve Repairs (1912, 1925): Finger Fracture Valvuloplasty
5.3.1 The First Successful Closed Surgery: Aortic Stenosis
5.3.2 The First Successful Closed Surgery: Mitral Stenosis
5.4 Cutler’s Era (1923–1928): Exchanging Stenosis for Insufficiency
5.5 Bailey, Harken, and Brock (1948–1957): Moving Away from Iatrogenic Insufficiency
5.5.1 A Race to Repair Mitral Stenosis
5.5.2 Repairing Aortic Stenosis
5.5.3 Repeated Repair Pulmonary Stenosis
5.5.4 After the First Ten Years of Valve Repair
5.6 Lewis, Gibbon, Lillehei, and Kirklin (1953–1955): Development of the Open Field
5.6.1 Cold Heart Logic
5.6.2 The Mechanical Heart and Lungs
5.6.3 Controlled Cross Circulation
5.6.4 The First Reliable Success with the Pump Oxygenator
5.7 Attempts to Repair Insufficiency (1956–1965): Before Carpentier
5.7.1 Earliest Attempts: Before the Open Field
5.7.2 First Successful Repair of Mitral Insufficiency: Open Heart
5.7.3 First Successful Repair of Aortic Insufficiency: Open Heart
5.7.4 First Successful Repair for Tricuspid and Pulmonary Insufficiency: Open Heart
5.8 Carpentier’s Era (1968–1983): Development of the Rigid Ring Prosthesis and Techniques to Repair Insufficient Aortic, Mitral, and Tricuspid Valves
5.9 Improving upon Carpentier (1975–Present): The Evolution of Annuloplasty and Annuloplasty Rings
5.10 Frater and David (1985–Present): Replacement of Chordae Tendineae with ePTFE
5.11 Kan, Inoue, and Cribier (1982–Present): Resurgence of Repair with the Advent of Balloon Valvuloplasty and Other Percutaneous Technology
5.12 Minimally Invasive and Robotic Techniques (1996–Present): The Key to Reducing Cost and Mortality
5.12.1 Cosgrove, Gundry, Falk, and Chitwood: Incisions and Aortic Occlusion
5.12.2 Video Assistance
5.12.3 Carpentier: Robotic Innovations
5.13 Concluding Remarks
References
Chapter 6: The Ross Procedure
6.1 Introduction
6.2 Evolution and Different Techniques for the RP
6.3 Advantages and Disadvantages of RP
6.4 Results of RP
6.5 RP in Combination with Other Cardiac Surgical Procedures
6.6 Surgical Alternatives to the RP
References
Chapter 7: Echocardiographic Imaging of Cardiac Valves
7.1 Introduction
7.2 Basics of Ultrasound
7.2.1 Ultrasound Physics
7.2.2 Doppler Physics
7.2.3 Quantitative Echocardiography
7.2.4 Other Echocardiographic Calculations to Evaluate Heart Valves
7.3 Basic Transesophageal Echocardiographic Exam
7.4 Aortic Valve
7.4.1 Aortic Valve Stenosis
7.4.2 Aortic Insufficiency
7.5 Mitral Valve
7.5.1 Mitral Valve Echocardiography Exam
7.5.2 Mitral Stenosis
7.5.3 Mitral Regurgitation
7.6 Tricuspid Valve
7.6.1 Tricuspid Stenosis
7.6.2 Tricuspid Regurgitation
7.6.3 Carcinoid Disease
7.7 Pulmonic Valve
7.7.1 Pulmonic Stenosis
7.7.2 Pulmonic Insufficiency
7.8 Endocarditis
7.9 Surgical Treatment of Valvular Disease
7.9.1 Mechanical Valves
7.9.2 Bioprosthetic Valves
7.9.3 Aortic Valve Replacement and Repair
7.9.4 Mitral Valve Replacement and Repair
7.9.5 Tricuspid Valve Replacement
7.9.6 Pulmonic Valve Replacement
7.10 Conclusion
References
Chapter 8: Advanced 3D Imaging and Transcatheter Valve Repair/Implantation
8.1 Introduction
8.2 Imaging in the Context of Transcatheter Valve Procedures
8.2.1 Transcatheter Aortic Valve Implantation
8.2.1.1 Anatomy
8.2.1.2 Imaging
8.2.2 Transcatheter Mitral Valve Procedures
8.2.2.1 Anatomy
8.2.2.2 Imaging
8.2.3 Transcatheter Tricuspid Valve Procedures
8.2.3.1 Anatomy
8.2.3.2 Imaging
8.3 From Bench to Bedside: Imaging and Device Design/Development
8.4 Conclusion
References
Untitled
Chapter 9: Transcatheter Mitral Repair and Replacement
9.1 Introduction
9.2 Design Criteria for Transcatheter Repair and Replacement
9.2.1 General Design Requirements
9.2.2 Mitral Replacement
9.2.2.1 Accurate Positioning and Migration Resistance
9.2.2.2 Access
9.2.2.3 Mechanism for Valve Expansion
9.2.2.4 Valve Performance
9.2.2.5 Anatomic Interactions
9.2.2.6 Preservation of Native Valve Structures
9.2.2.7 Applicability for Various Sizes and Conditions
9.2.3 Indirect Annuloplasty
9.2.4 Direct Annuloplasty
9.2.5 Transcatheter Edge-to-Edge Repair (TEER)
9.2.6 Chordal Replacement
9.2.7 LV Repair
9.3 Transcatheter Mitral Replacement Versus Transcatheter Mitral Repair
9.4 Conclusions/Summary
References
Chapter 10: Percutaneous Pulmonary Valve Implantation: 20 Years of Development
10.1 Introduction
10.2 Balloon Expandable Devices
10.2.1 Medtronic Melody® Valve
10.2.1.1 Clinical Experience
10.2.2 Edwards Lifesciences Sapien (XT, S3, Ultra)
10.2.2.1 Clinical Experience
10.3 Self-Expanding Devices
10.3.1 Medtronic Harmony® Valve
10.3.1.1 Clinical Experience
10.3.2 Alterra Adaptive Prestent
10.3.2.1 Clinical Experience
10.3.3 Venus P-Valve
10.3.3.1 Clinical Experience
10.3.4 Pulsta Valve
10.3.4.1 Clinical Experience
10.4 Engineering Studies in PPVI
10.4.1 Stent Fracture
10.4.2 Patient Selection
10.4.3 Device Design
10.5 Conclusion
References
Chapter 11: Transcatheter Aortic Valve Implantation
11.1 Introduction
11.2 Patient Selection
11.3 Clinical Criteria
11.3.1 Surgical Risk
11.3.2 Age
11.3.3 Frailty
11.3.4 Coronary Artery Disease
11.3.5 Mixed Valve Disease
11.4 Anatomical Criteria
11.4.1 Valve Anatomy
11.4.2 Assessment of the Aortic Valve Complex
11.4.3 Vascular Access (Transfemoral and Alternative Access Sites)
11.5 TAVI Procedure
11.5.1 Pre-procedural Planning
11.5.2 Transfemoral TAVI: Procedural Steps
11.6 Antithrombotic Management
11.7 TAVI-related Complications
11.8 Cardiac Complications
11.8.1 Paravalvular Regurgitation
11.8.2 Conduction Disturbances
11.8.3 Coronary Artery Obstruction
11.8.4 Aortic Annular Rupture
11.8.5 Valve Embolization
11.8.6 Valve Thrombosis
11.8.7 Endocarditis
11.9 Non-cardiac Complications
11.9.1 Stroke
11.9.2 Vascular Complications
11.10 THV Durability
11.11 Emerging Indications
11.11.1 TAVI for Bicuspid Aortic Valve Patient
11.11.2 Valve-in-Valve for Surgical Bioprostheses
11.11.3 Pure Native Aortic Valve Regurgitation
11.12 Conclusion
References
Chapter 12: Post-TAVI PCI
12.1 Introduction
12.2 Coronary Access After TAVI Implantation
12.3 Coronary Artery Occlusion Prevention
12.4 Ostial Coronary Stenting Through the Prosthesis Frame
12.5 Conclusion
References
Chapter 13: Tissue-Engineered Heart Valves
13.1 Introduction
13.2 Current Methods of Heart Valve Tissue Engineering
13.2.1 Tissue-Engineered Matrix TEHVs
13.2.2 In Vitro Culture of Tissue-Engineered Matrix TEHVs
13.2.3 Bioresorbable Polymer TEHVs
13.3 In Vivo Results: Preclinical and Clinical Studies
13.4 Future Directions
13.5 Summary
References
Chapter 14: Anticoagulation Management for Mechanical Valves in the On-X Era
14.1 Introduction
14.2 Risk of Mechanical Valve Thrombotic and Thromboembolic Complications
14.3 What Determines the Thrombotic Risks of the Mechanical Valve
14.3.1 Biomaterials
14.3.2 Hemodynamics
14.3.3 Cavitation
14.3.4 Patient Factors
14.4 INR Targets for Mechanical Valves
14.5 The On-X Mechanical Valve and Newer Generation Bi-Leaflet Valves
14.6 Complications of Anticoagulation in Mechanical Valve Replacements
14.7 Are DOACS a Reasonable Option?
14.8 Anticoagulation Considerations in Special Populations
14.8.1 Anticoagulation in the Pregnant Patient with a Mechanical Valve
14.9 Perioperative Management of Anticoagulation in Patients with Mechanical Valves
14.9.1 Dental Procedures
14.9.2 Endoscopic Procedures
14.10 Atrial Fibrillation and Mechanical Valves
14.10.1 Anticoagulation in Patients with a Mechanical Valve, Atrial Fibrillation, and Coronary Disease
14.11 Anticoagulation with Allergies/Adverse Reactions
14.12 Concluding Remarks
References
Part III: Testing, Regulatory and Training Issues
Chapter 15: In Vitro Testing of Heart Valve Substitutes
15.1 Introduction
15.2 Primary Functions of a Heart Valve Substitute
15.3 Heart Valve Substitute Use Conditions
15.3.1 Device Implantation
15.3.2 Device In Vivo Operation
15.4 Risk Assessment
15.5 In Vitro Evaluations
15.5.1 Component Material and Mechanical Property Testing
15.5.2 Device Acute Performance Testing
15.5.2.1 Frame/Housing Crush Resistance
15.5.2.2 Frame Deflection
15.5.2.3 Sewing Ring Integrity
15.5.2.4 Frame Creep
15.5.2.5 Radial Stiffness, Recoil, Radial Resistive Force (RRF), and Chronic Outward Force (COF)
15.5.2.6 Device Integrity
15.5.2.7 Corrosion
15.5.2.8 Hydrodynamic Performance
15.5.2.9 Migration Resistance
15.5.2.10 Thrombogenic and Hemolytic Potential
15.5.2.11 Cavitation Potential
15.5.3 Fatigue Assessment
15.5.3.1 Stress or Strain Analysis
15.5.3.2 Material Fatigue Characterization
15.5.3.3 Structural Reliability Assessment
15.5.3.4 Component Fatigue Demonstration Testing
15.5.4 Valve Durability Assessment
15.5.4.1 Accelerated Wear Testing (AWT)
15.5.4.2 Dynamic Failure Mode (DFM) Testing
15.5.4.3 Real-Time Wear Testing (RWT)
15.5.5 System Testing
15.5.6 Packaging Testing
15.6 Summary
References
Chapter 16: Perspectives on Heart Valve Modelling: Contexts of Use, Risk, Validation, Verification and Uncertainty Quantification and End-to-End Example
16.1 Introduction to VV40
16.2 Context of Use (COU) and Model Risk for Heart Valve Modelling
16.2.1 Challenges of Validating Patient-Specific Models
16.2.2 Model V&V Reporting
16.3 Summary and Conclusion
Appendix I: End-to-End Example VVUQ Transcatheter Valve
Background
Question of Interest
Define Context of Use (COU)
Assess Model Risk
Establish Credibility Goals
Model Description
Credibility Activities
Assessment (ASME V&V 40 5.2.3)
Applicability (ASME V&V 40 5.2.3)
References
Chapter 17: Numerical Methods for Design and Evaluation of Prosthetic Heart Valves
17.1 Brief History of Analyses of Prosthetic Heart Valves
17.2 Best Practices in Modeling Valve Prostheses
17.2.1 Problem Definition
17.2.2 Materials and Constitutive Models
17.2.2.1 Balloon-Expandable Transcatheter Frames
17.2.2.2 Self-Expandable Transcatheter Frames
17.2.2.3 Tissue Leaflets
17.2.3 Geometry/Mesh/Element Type
17.2.4 Loading Conditions (Constraints and Loads)
17.2.5 Physics/Solution Method
17.2.6 Model Verification and Validation
17.2.7 Interpretation
17.2.8 Documentation
17.2.9 Peer Review
17.3 Summary and Conclusions
References
Chapter 18: Animal Models for Cardiac Valve Research
18.1 Introduction
18.1.1 Acute Versus Chronic Testing
18.1.2 Regulations
18.2 Choosing the Correct Animal Model
18.2.1 Spontaneously Occurring Animal Models of Congenital Valve Disease
18.2.2 Species-to-Species Variability
18.2.2.1 Comparative Anatomy
18.2.2.2 Rate of Growth
18.3 Basic Experimental Design
18.3.1 Anesthetics and Monitoring
18.3.2 Accessing the Heart
18.4 Replacement Heart Valve Testing
18.4.1 Percutaneously Placed Valve Testing
18.4.2 Surgically Placed Valve Testing
18.5 Good Laboratory Practice and FDA Submission
18.6 Summary
References
Chapter 19: The Preclinical Uses of Isolated Heart Models and Anatomic Specimens as Means to Enhance the Design and Testing of Cardiac Valve Therapies
19.1 Introduction
19.2 Anatomical Specimens and Static Imaging
19.3 The Visible Heart® Human Specimen Library
19.4 In Vitro Isolated Heart Models
19.5 How Can an Isolated Heart Prep Augment and Compliment Benchtop Testing?
19.6 The Importance of Species Selection in In Vitro Cardiac Valve Research
19.7 Understanding and Modulating Heart Function In Vitro
19.8 Comparative Imaging in the Visible Heart® Apparatus
19.9 A Portable Visible Heart® or “VH Mobile”
19.10 Limitations of Visible Heart® Methodologies
19.11 Acute Testing of Pathological Animal Models
19.12 Future Directions
19.13 The Atlas of Human Cardiac Anatomy
19.14 Conclusion
References
Chapter 20: Clinical Trial Requirements for Cardiac Valves
20.1 Introduction
20.2 Regulatory Bodies
20.2.1 Food and Drug Administration (United States)
20.2.2 Other Regulatory Bodies
20.2.3 Good Clinical Practice Oversight
20.3 The Generalized Clinical Trial Cycle/Process
20.3.1 Features of a Trial Design for a Newly Developed Heart Valve
20.3.2 Reimbursement and Payer Information
20.3.3 Clinical Trial Site Selection
20.3.4 Clinical Trial Execution
20.3.5 Data Collection Within the Clinical Trial
20.3.6 Data Collected for Each Subject Enrolled into a Clinical Trial
20.3.7 Clinical Trial Sample Size and Follow-Ups
20.3.8 Complications and Management of Adverse Events
20.4 Summary/Conclusion
References
Chapter 21: Clinical Applications of 3D Modeling and Printing for Intracardiac Valves
21.1 Introduction: A Brief History of 3D Modeling and Printing
21.1.1 3D Printing Background
21.1.1.1 3D Printing History
21.1.1.2 Printing Processes and Materials
21.1.1.3 Considerations, Advantages, and Disadvantages for Clinical Use Cases
21.1.2 Clinical Workflow: From Scan to Model and Beyond
21.1.3 3D Printing Access
21.2 3D Modeling and Printing for Cardiac Clinical Applications
21.2.1 Overview of Cardiac Clinical Applications
21.2.1.1 Rapid Prototyping in Medical Device Design
21.2.1.2 Patient-Specific Medical Devices and Implants
21.2.1.3 Patient-Specific Anatomical Modeling and Virtual Prototyping
21.2.2 Usage Cases: Intracardiac Valve Modeling
21.2.2.1 Pediatric Case: Evaluation for TPVR
21.2.2.2 Adult Case: Prediction of TAVR Complications
21.3 Today and Tomorrow: Where Are We Now, and Where Are We Headed?
21.3.1 Current Technologies and Ongoing Research
21.3.2 Future Advancements
References
Chapter 22: Procedural Training and Education: A Multimodal and Interactive Approach
22.1 Introduction
22.2 3D Modeling of Cardiac Structures and Associated Vasculature
22.3 3D Printing of Cardiac Structures and Surrounding Blood Vessels
22.4 Virtual Reality of Cardiac Structures and Surrounding Blood Vessels
22.4.1 General Human Anatomical Education
22.4.2 Transcatheter Aortic Valve Replacement
22.5 A Multimodal Approach for Teaching Transesophageal Echocardiography (TEE)
22.6 Conclusion
References
Index