Handbook on Synthesis Strategies for Advanced Materials: Volume-II: Processing and Functionalization of Material

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.   



Author(s): A. K. Tyagi, Raghumani S. Ningthoujam
Series: Indian Institute of Metals Series
Publisher: Springer
Year: 2022

Language: English
Pages: 863
City: Singapore

Series Editor’s Preface
Preface
Contents
About the Editors
1 Shape Forming and Sintering of Ceramics
1.1 Introduction
1.2 Important Characteristics of Ceramic Feed Material for Shape Forming
1.2.1 Physical Characteristics
1.2.2 Chemical Characteristics
1.3 Role of Additives in Ceramic Green Shape Formation
1.4 Green Shape Forming Techniques
1.4.1 Shape Forming Processes Staring with Dry Powders
1.4.2 Shape Forming Using Ceramic Paste
1.4.3 Shape Forming Using Ceramic Slurry
1.5 Sintering Phenomenon
1.5.1 Different Energy Terms in Sintering
1.5.2 Sintering and De-Sintering Phenomena
1.5.3 Driving Force for Sintering
1.5.4 Mass Transport Mechanism
1.5.5 Stages of Sintering
1.6 Assisted Sintering Processes
1.6.1 Liquid Phase Sintering
1.6.2 Hot Pressing
1.6.3 Hot Isostatic Pressing (HIP)
1.6.4 Field Assisted Sintering
1.6.5 Microwave Sintering
1.6.6 Reactive Sintering
1.6.7 Additive Manufacturing in Ceramics
1.7 Factors Affecting Sintering
1.8 Common Defects in Ceramic Sintering and Sintering Approaches
1.9 Case Study of Sintering Cycles
1.10 Future Directions in Shape Forming and Sintering
1.11 Conclusion
References
2 Growth of Single Crystals for Nuclear Radiation Detection
2.1 Introduction
2.1.1 Crystalline Structure
2.1.2 History
2.1.3 Applications
2.2 Growth of Single Crystals
2.2.1 Basic Concept
2.2.2 Various Methods and Techniques
2.2.3 Challenges and Strategies
2.3 Characterization Techniques
2.3.1 Thermal and Structural Characterization
2.3.2 Electronic And Optical Characterization
2.3.3 Scintillation Properties
2.4 Improvement of Performance Characteristics
2.4.1 Material Designing and Dopant
2.4.2 Effect of Co-Doping
2.4.3 Growth Ambient and After Growth Treatment
2.5 Conclusion and Future Outlook
References
3 Techniques for Thin Films of Advanced Materials
3.1 Introduction
3.2 Basic Introduction and Fundamentals of Thin Film Techniques
3.3 Physical Deposition Techniques
3.3.1 Thermal Evaporation
3.3.2 Electron Beam Evaporation
3.3.3 Laser Beam Evaporation (Pulsed-Laser Deposition)
3.3.4 Epitaxial Growth Techniques
3.3.5 Sputtering
3.4 Chemical Techniques for Thin Film Deposition
3.4.1 Sol–Gel Method
3.4.2 Spray Pyrolysis
3.4.3 Chemical Bath Deposition (CBD)
3.4.4 Chemical Vapor Deposition (CVD)
3.4.5 Atomic Layer Deposition
3.5 Organic Monolayers
3.5.1 Langmuir–Blodgett Technique (LB)
3.5.2 Self-Assembled Monolayers (SAMs)
3.6 Hybrid Approaches for Thin Film Deposition
3.7 Non-conventional Thin Film Techniques
3.8 Transfer of Thin Films from One Substrate to Another
3.9 Future Prospects and Conclusion
References
4 Inkjet Printing of Nanomaterials and Nanoinks
4.1 Overview of Printing Technology
4.1.1 Introduction
4.1.2 Drop-On-Demand Inkjet Printing
4.1.3 Thermal Inkjet Printer
4.1.4 Piezo Inkjet
4.1.5 Rheology of Inks for Inkjet Printing
4.2 Applications
4.3 An Introduction to 3D Inkjet Printing
4.4 Highlights of Our Results On DOD Inkjet Printing
4.5 Conclusions
4.6 Future Scope
References
5 Particle Size and Shape Engineering for Advanced Materials
5.1 Introduction
5.2 Different Types of Particles in Materials Science
5.3 Need for Different Sizes of Particles and Shapes in Advanced Materials
5.4 The Role of Nanosized Particles in Advanced Materials and Recent Advances in Nanoscience and Nanotechnology
5.4.1 Aggregation and Agglomeration
5.4.2 Atomic Structure in Lattice
5.4.3 Magnetic Properties
5.4.4 Electrical Resistivity Property
5.4.5 Optical Property
5.4.6 Bulk Density of Materials
5.4.7 Variation in Properties from Single Layer to Multilayer/Heterstructures/Superlattice
5.4.8 Evolution of Multifunctional Materials by the Formation of Core–Shell or Composite or Hybrid
5.4.9 Change in Crystal Structure or Crystallinity with Reduction in Particle Size
5.4.10 Induced Electric Field or Induced Magnetic Field Study
5.4.11 Thermodynamic Properties (Excess Enthalpy, Melting Point) with Decrease in Particle Size
5.4.12 Surface Functionalization, Processing, and Finishing for a Particular Application
5.5 Determination of Particle Size Distribution
5.5.1 Gaussian or Normal Distribution (Mean, Median, and Mode)
5.5.2 Log-Normal Distribution
5.5.3 Other Distributions
5.5.4 Aspect Ratio, Regular, and Irregular Shapes
5.6 Mechanism
5.6.1 Solid State Phase
5.6.2 Liquid State Phase
5.6.3 Gas State Phase
5.6.4 Single-Crystal Growth
5.7 Conclusions
References
6 Synthesis of Porous Materials
6.1 Introduction
6.2 Types of Pores
6.2.1 Accessibility and the Shape of the Pores
6.2.2 Size of the Pores
6.2.3 Ordering of the Pores
6.2.4 Type of Pore Dimension
6.3 Synthesis of Porous Metallic Materials
6.3.1 Sintering
6.3.2 Fibre Sintering
6.3.3 Metallic Melt Foaming
6.3.4 Introduction of Gases to Metallic Melt
6.3.5 Infiltration Casting
6.3.6 Metal Deposition
6.3.7 New Methods for Directional Porous Metals
6.4 Synthesis of Porous Ceramic Materials
6.4.1 Microporous Materials
6.4.2 Formation of Zeolites
6.4.3 Mesoporous Materials
6.4.4 Application of Mesoporous Molecular Sieves
6.4.5 Hard Templating Method (Nano-Casting)
6.5 Characterization for Different Types of Pores
6.5.1 Adsorption Techniques
6.5.2 Small Angle X-Ray Scattering (SAXS)
6.5.3 Mercury Porosimetry
6.6 Conclusion
References
7 Synthesis of Highly Ordered Nanoporous Anodic Aluminium Oxide Templates and Template-Based Nanomaterials
7.1 Introduction
7.2 Anodic Aluminium Oxide (AAO)
7.2.1 Types of AAO
7.2.2 Growth Mechanism of AAO
7.3 Synthesis of Self-ordered Nanoporous AAO Structure
7.3.1 Modified Mild Anodization (MMA) Process
7.3.2 Synthesis of Self-ordered PAAOs with Small Pore Sizes
7.3.3 Effect of Anodizing Potential on Pore Regularity
7.3.4 Effect of Anodizing Temperature on Pore Regularity
7.3.5 Pore Diameter, Inter-Pore Distance and Growth Kinetics
7.3.6 Porosity
7.3.7 Modified Hard Anodization (MHA) Process
7.3.8 Synthesis of Self-ordered PAAO Nanostructure by Pulse Anodization (PA)
7.4 Synthesis of Ultra-Small Pore Diameter PAAOs
7.5 Self Standing PAAO Membrane Formation
7.6 PAAO Template Based Nanomaterials Fabrication
7.6.1 Fabrication of Nanomaterials
7.6.2 Applications
7.7 Summary
References
8 Synthesis Aspects of Nanoporous and Quasi-One-Dimensional Thin Film Architecture Photoelectrodes for Artificial Photosynthesis
8.1 Introduction
8.2 Desired Features of Photoelectrodes Used for Photoelectrocatalysis
8.3 Quasi-One-Dimensional Nanostructures
8.4 Role of Quasi-One-Dimensional Photoelectrodes in Improving the Efficiency of the Photoelectrodes
8.4.1 Improvement in the Light Absorption
8.4.2 Improvement in the Carrier Collection Efficiency
8.5 Conventional Synthesis Methods Adopted for Fabrication of Nanostructured Thin Film Photoelectrodes
8.5.1 Drop Casting
8.5.2 Spin Coating
8.5.3 Dip Coating
8.5.4 Doctor Blading
8.5.5 Spray Coating
8.6 Synthesis Strategies for the Fabrication Quasi-One-Dimensional Thin Films
8.6.1 Hydrothermal/Solvothermal
8.6.2 Electrochemical Anodization
8.6.3 Electrodeposition
8.6.4 Electrospinning
8.6.5 Template Assisted (TA) Growth
8.6.6 Chemical Vapour Deposition
8.6.7 Atomic Layer Deposition
8.7 Conclusions and Future Scope
References
9 Synthesis Strategies and Applications of Metallic Foams and Hollow Structured Materials
9.1 Introduction
9.2 Synthesis Procedures Porous Materials
9.2.1 Synthesis of Ordered Porous Nano Structures Through Template Route
9.2.2 Synthesis of Non-ordered Porous Nano Structures
9.2.3 Hollow Nanostructured Materials
9.2.4 Synthesis of Hollow Nano Structure Using Galvanic Replacement
9.2.5 Kirkendall Effect
9.2.6 Foams of Metal Chalcogenide
9.2.7 Synthesis of Porous Structure Through Electrospinning Route
9.3 Applications of Porous Structured Materials
9.3.1 Use of Foams in Li Ion Battery and Supercapacitors
9.3.2 Application of Porous Nano Structures in Fuel Cell Technologies
9.3.3 Application of Porous Structures in Electrochemical Sensors and Biosensors
9.3.4 Applications Porous Materials in Concentrating Solar Power (CSP)
9.3.5 Commercial and Large Scale Applications of Foams
9.3.6 Application of Foams in Regenerative Medicines
9.4 Graphene Foam
9.5 Summary
References
10 Exfoliation Routes to the Production of Nanoflakes of Graphene Analogous 2D Materials and Their Applications
10.1 Introduction
10.2 Classes, Structure of 2D Materials and Their Band Structures
10.2.1 Graphene
10.2.2 Transition Metal Dichalcogenides (TMDCs)
10.2.3 Monoelemental Graphene Analogous Materials
10.2.4 MXenes
10.3 Synthetic Routes to 2D Layers
10.3.1 Top-Down Approach
10.4 Characterisation Methods
10.4.1 Atomic Force Microscopy (AFM) and Optical Imaging
10.4.2 Raman Spectroscopy
10.4.3 UV–Vis Absorption Spectrum
10.4.4 Photoluminescence (PL) Spectroscopy
10.5 Applications of 2D Nanolayers
10.5.1 Field-Effect Transistors (FETs)
10.5.2 Photovoltaic Devices/Solar Cells
10.5.3 Supercapacitors
10.6 Conclusions
References
11 Drying of Tiny Colloidal Droplets: A Novel Synthesis Strategy for Nano-structured Micro-granules
11.1 Introduction
11.2 Synthesis of Micro-granules by Spray Drying
11.3 Colloidal Self-assembly During Spray Drying
11.4 Characterization Techniques
11.5 A Few Illustrative Examples
11.5.1 Nano-structured Silica Micro-granules with Spherical and Doughnut Morphology
11.5.2 Macro/Meso Porous Silica Micro-spheres Using Template Mechanism
11.5.3 TiO2/SiO2 Nano-composites Via Spray Drying of Mixed Colloids
11.5.4 Formation of Nano-composite Micro-spheres with Core–Shell Spatial Distribution
11.6 Future Outlook
References
12 Amphiphilic Self-Assembly in the Synthesis and Processing of Nanomaterials
12.1 Introduction
12.2 Self-Assembly of Amphiphiles
12.2.1 Morphological Control of Self-Assembled Structures
12.2.2 Kinetics of Micellization of Amphiphiles
12.3 Principle of Nanomaterials Synthesis
12.3.1 Nucleation
12.3.2 Growth
12.3.3 Role of Surfactants in Nanomaterials Synthesis
12.4 Self-Assemblies as a Template for Nanomaterials Synthesis
12.4.1 Surfactant Assisted Synthesis
12.4.2 Block Copolymer Mediated Nanomaterial Synthesis
12.5 Microemulsions as Nanoreactors for Synthesis of Nanomaterials
12.6 Langmuir–Blodgett Approach for Mesostructured Composites and Thin Films
12.7 Conclusions and Future Perspectives
References
13 Synthesis of Functionalized Noble Metal Nanoparticles
13.1 Introduction
13.2 Synthetic Strategies
13.2.1 Chemical Reduction
13.2.2 Radiolytic Reduction
13.2.3 Photochemical Synthesis
13.3 Applications of Functionalized Noble Metal Nanoparticles
13.4 Conclusion and Future Prospects
References
14 Synthesis and Surface Functionalization of Nanostructured Biomaterials
14.1 Introduction
14.2 Characteristics and Properties
14.2.1 Structural Properties
14.2.2 Biological Properties
14.3 Different Types of Nanostructured Biomaterials: A Glimpse Toward Synthesis Aspects
14.3.1 Organic Nanostructured Biomaterials
14.3.2 Inorganic Nanostructured Biomaterials
14.3.3 Hybrid Nanostructured Biomaterials
14.4 Surface Modification of Nanostructured Biomaterials
14.5 Applications of Nanostructured Biomaterials
14.5.1 Therapeutic and Diagnostic Applications
14.5.2 Tissue Engineering Applications
14.5.3 Devices and Implants
14.6 Summary and Future Prospects
References
15 Implications of Synthesis Methodology on Physicochemical and Biological Properties of Hydroxyapatite
15.1 Introduction
15.2 Classification of Synthesis Methodologies for HAp
15.3 Synthesis Methodologies: Effect on Physicochemical and Biological Properties
15.3.1 Dry Methods/Physical Methods
15.3.2 Wet Methods
15.3.3 Miscellaneous Methods
15.4 Conclusion
References
16 Synthesis and Processing of Magnetic-Based Nanomaterials for Biomedical Applications
16.1 Introduction
16.2 Synthesis Methods
16.2.1 Aqueous Phase Synthesis Routes
16.2.2 Non-aqueous/Organic Phase Synthesis Routes
16.2.3 Biological Synthesis Routes
16.3 Surface Modification and Ligand Exchange Method
16.4 Biomedical Applications of Nanomaterials
16.4.1 Magnetic Nanomaterial-Based Thermal Therapy
16.4.2 Magnetic Nanomaterials for Drug Delivery
16.4.3 Magnetic Nanomaterials for Bioimaging
16.4.4 Magnetic Nanomaterials for Biosensors
16.5 Conclusions
References
17 Role of Synthesis in Evolution of Catalyst: Bulk, Dispersed to Single Atom
17.1 Introduction
17.2 Bulk Catalysts
17.2.1 Preparation of Bulk Catalysts
17.2.2 Preparation of Mixed Metal Oxides (MMO) Nanoparticles
17.3 Dispersed Catalysts
17.4 Single Atom Catalysts (SAC)
17.4.1 Atomic Layer Deposition (ALD) Method
17.4.2 Wet-Chemical Route
17.4.3 Photodeposition Method
17.4.4 Atom Trapping Strategy
17.5 Thermal Reactions
17.5.1 CO Oxidation
17.5.2 N2O Reduction
17.5.3 H2SO4 Decomposition
17.6 Conclusions
References
18 Synthesis—Activity Correlations Established for TiO2 Based Photocatalysts
18.1 Introduction
18.1.1 Background
18.1.2 Processes Involved
18.1.3 Thermodynamic Criterion for Selection
18.1.4 Evaluation of Photocatalytic Activity
18.1.5 Overview of the Literature Reports for Photocatalytic Hydrogen Generation
18.1.6 Aim and Scope
18.2 Bulk TiO2 as a Photocatalyst
18.3 Nano TiO2
18.3.1 Zero Dimensional TiO2
18.3.2 One Dimensional TiO2
18.3.3 Two Dimensional TiO2
18.3.4 Three Dimensional TiO2
18.4 Modifications in TiO2
18.4.1 Cationic Doping
18.4.2 pn Heterojunction
18.4.3 Semiconductor—Metal Heterojunctions
18.5 Single Atom Catalysts (SACs)
18.6 Development of TiO2 Based Photocatalysts
18.6.1 Type-II pn Heterojunction
18.6.2 Carbon@TiO2 Composites
18.6.3 Cationic Doping
References
19 Lasers in Materials Processing and Synthesis
19.1 Introduction
19.2 Back to the Basics: Light Industry
19.3 Analysis of Material Processing System
19.3.1 Time Attribute
19.3.2 Spatial Attribute
19.3.3 Frequency Attribute
19.3.4 Magnitude Attribute
19.4 Application Areas
19.4.1 Laser Drilling
19.4.2 Laser Cutting
19.4.3 Laser Marking and Engraving
19.5 More Applications
19.5.1 Laser Hardening
19.5.2 Laser Glazing
19.5.3 Laser Cladding
19.5.4 Laser Shock Peening
19.6 Shifting of Landscape
19.6.1 Rapid Prototyping and Additive Manufacturing
19.7 Ultrafast Laser Processing of Materials
19.8 Lasers in Materials Synthesis
19.9 Selectivity of Photoexcitation
19.10 Laser Pyrolysis
19.10.1 Synthesis of Defined Solids and Catalysts with Lasers
19.10.2 Laser-Induced Powder Generation
19.10.3 Synthesis of Metastable Materials
19.11 Molecule-Selective Chemistry
19.11.1 Laser Ultra-Purification
19.11.2 Organic Synthesis with Lasers
19.11.3 Laser Isotope Separation (LIS)
19.12 Laser Chemical Vapor Deposition (LCVD)
19.12.1 Metal Films
19.12.2 Deposition from Metal Carbonyls
19.13 Chemical Transformations in Bulk and Within Thin Film Materials
19.14 Pulsed Laser Synthesis of Nanomaterials
19.14.1 Synthesis by Pulsed Laser Ablation (PLA)
19.14.2 Laser for Biomaterial Coatings
19.15 Laser-Induced Graphene
19.16 Conclusions and Future Perspectives
References
20 Ultra Fast Electrically Exploding Wire Method for Production of Raw Material for Additive Manufacturing Based 3D Printing
20.1 Introduction
20.1.1 Concept of Pulsed-Power Plasma Method
20.1.2 Merits and Demerits of This Method
20.2 Characterization and Other Properties
20.3 Application of Advance Materials Prepared By This Route
20.4 Nanoparticle Production
20.5 Tailoring of Particle Size
20.6 Effect of Various Parameters on Powder Properties
20.6.1 Effect of Medium
20.6.2 Pressure Control
20.6.3 Production of Nanoparticles Inside the Liquid
20.7 Conclusions
References