Handbook of Nanocomposite Supercapacitor Materials IV: Next-Generation Supercapacitors

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book covers next-generation nanocomposite supercapacitor materials. It deals with a wide range of emerging and sustainable supercapacitors based on, e.g., low-dimensional materials including transition metal oxides, carbons, Mxenes, etc., and metal-organic frameworks. Additionally, it features up-to-date coverage of advanced supercapacitors such as 3D printing, atomic layer deposition, recycling, quantum, on-chip, shape memory, self-healing, and micro-scale supercapacitors.
This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction.
Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.

Author(s): Kamal K. Kar
Series: Springer Series in Materials Science, 331
Publisher: Springer
Year: 2023

Language: English
Pages: 443
City: Cham

Preface
Contents
Editor and Contributors
About the Editor
Contributors
1 Introduction to Supercapacitors
1.1 Introduction
1.2 Fundamentals of Supercapacitor
1.3 The Charge Storage Mechanism of Supercapacitors
1.4 Electrochemical Cell Configuration
1.4.1 Three Electrode System
1.4.2 Two Electrode System
1.5 Electrochemical Measurement Techniques for Supercapacitor
1.5.1 Cyclic Voltammetry (CV)
1.5.2 Constant Current Charge–Discharge (CCCD)
1.5.3 Electrochemical Impedance Spectroscopy (EIS)
1.6 Electrochemical Methods for Determining the Contribution of Various Charge Storage Mechanisms
1.6.1 Trasatti Method (Voltammetric Charge Dependence on Scan Rate)
1.6.2 Dunn Method (Current Dependence on Scan Rate from the CV)
References
2 Traditional Electrode Materials for Supercapacitor Applications
2.1 Introduction
2.2 Electrode Materials
2.2.1 Properties of Electrode Materials
2.2.2 Nanomaterials as Electrode Materials
2.3 Materials for Electrodes of Supercapacitors
2.3.1 Carbon Materials
2.3.2 Transition Metal Dechalcogenide (TMD)
2.3.3 Transition Metal Oxide (TMO)
2.3.4 Spinel-Based Nanostructured Materials
2.3.5 Spinel-Type Oxides (MMoO4 (M=Fe, Ni, Co))
2.4 Conclusion
References
3 Emerging 2D Materials for Supercapacitors: MXenes
3.1 Introduction
3.2 Synthetic Strategies
3.2.1 HF Etching Method
3.2.2 Alkali Etching Method
3.2.3 Molten Salt Etching Method
3.2.4 Acid/fluoride Salt or Hydrofluoride Etching
3.2.5 Electrochemical Etching
3.3 Structure and Properties of MXenes
3.4 MXenes in Supercapacitors
3.4.1 MXenes as Supercapacitor Electrode Materials
3.4.2 MXene-Based Composites as Supercapacitor Electrode Materials
3.5 Progress of MXenes-Based Supercapacitor Devices
3.6 Conclusions and Outlook
References
4 Laser as a Tool for Fabrication of Supercapacitor Electrodes
4.1 Introduction
4.2 Laser Technology in Energy Electrodes Design
4.3 Processing of Laser in Carbon Materials
4.3.1 Cutting
4.3.2 Etching
4.3.3 Ablation
4.3.4 Laser Writing
4.3.5 Laser Printing
4.3.6 Defect Creation
4.4 Laser-Assisted Modification of Carbon Materials
4.4.1 Carbonization
4.4.2 Transformation of Graphite to Graphene
4.4.3 Non-crystalline Carbon to Graphene
4.4.4 Laser-Induced Graphene
4.4.5 Reduction of Graphene Oxide
4.5 Laser-Derived Material in Supercapacitor
4.5.1 Electrochemical Double-Layer Capacitors
4.5.2 Pseudocapacitors
4.5.3 Hybrid Supercapacitors
4.6 Direct Laser-Based Fabrication of Micro-supercapacitor
4.7 Conclusions and Future Perspectives
References
5 Scalable Supercapacitors
5.1 Introduction
5.2 Challenges in Scalable Energy Storage Devices
5.2.1 Degradation in Performance
5.2.2 Cost-Effectiveness
5.2.3 Heating Issues
5.2.4 Voltage Imbalance
5.3 Ways to Address Challenges for Large-Scale Supercapacitors
5.3.1 Geometry/Electrode Structure
5.3.2 Cost-Effectiveness by Using Industrial Waste
5.3.3 Device Architecture
5.3.4 Voltage Stabilization
5.4 Fabrication Techniques
5.4.1 Printed Supercapacitors
5.4.2 Additive Nanomanufacturing (ANM)
5.4.3 Electrode and Electrolyte
5.4.4 Material Processing and Optimization
5.5 Testing of Supercapacitors
5.6 Conclusions and Future Outlook
References
6 3D Printed Supercapacitors
6.1 Introduction
6.2 Printing Methods
6.2.1 Fused Deposition Modeling
6.2.2 Direct Ink Writing
6.3 Printable Materials for Supercapacitors
6.3.1 Electrode Materials
6.3.2 Electrolyte Materials
6.4 Device Design
6.5 Recent Progress in 3D Printing of Supercapacitors
6.5.1 FDM Printed Supercapacitors
6.5.2 DIW Printed 3D Supercapacitors
6.6 Technology Considerations, Challenges, and Future Outlook
6.6.1 Choice of Printing Method
6.6.2 Materials
6.6.3 Use of Non-3D Printing Methods to Fabricate Device Components
6.6.4 Post-processing
6.6.5 Device Design and Electrode Architecture
6.6.6 Sustainability
6.7 Conclusions
References
7 Atomic Layer Deposited Supercapacitor Electrodes
7.1 Introduction
7.2 Fundamentals of ALD
7.3 ALD-Grown Electrodes for Supercapacitors
7.3.1 ALD Coating on Carbonaceous Scaffolds
7.3.2 ALD Coating on Non-carbonaceous Three-Dimensional Scaffolds
7.4 Conclusions
References
8 Binder-Free Supercapacitors
8.1 Introduction
8.2 Fabrication Strategies of Binder-Free Electrode
8.2.1 Physical Methods
8.2.2 Chemical Methods
8.2.3 Electrical Methods
8.3 Conclusions
References
9 High Mass Loading Supercapacitors
9.1 Introduction
9.2 Effect of Mass Loading
9.3 Materials for High Mass Loading
9.3.1 Carbon Materials
9.3.2 Transition Metal Oxide
9.3.3 Conducting Polymers
9.3.4 Emerging Electrode Materials
9.4 Electrode Materials Synthesis Techniques
9.4.1 Interconnected Conducting Porous Network Structure
9.4.2 Aerogel Synthesis Techniques
9.4.3 Doping and Surface Modification
9.5 Electrochemical Performance
9.6 Summary and Perspective
References
10 Flexible-High-Conducting Polymer-In-Salt-Electrolyte (PISE) Membranes: A Reality Due to Crosslinked-Starch Polymer Host
10.1 Introduction
10.2 Starch-Based Electrolytes
10.2.1 Starch as a Host Matrix for Polymer-Electrolytes
10.2.2 Reasons Why Starch Has not Been as Popular as It Deserves
10.2.3 Possible Approaches to Rectify the Problems with Starch
10.2.4 Success Story of Crosslinked Starch-Based PISEs
10.3 Conclusion
References
11 Magneto-Electric Supercapacitors
11.1 Introduction
11.2 Synthesis of Magnetic Transition Metal Oxides
11.2.1 Synthesis of Fe2O3 Nanoleaflets
11.2.2 Synthesis of Fe2O3 Rod-Like Structures
11.2.3 Synthesis of Fe2O3 Nanospheres
11.3 Magnetic Electrolyte or Effect of the External Magnetic Field on the Electrolyte
11.3.1 Introduction of Magneto-Electric Effect (MEE)
11.3.2 Effect of Magnetic Field on the Electrochemical Performances
11.4 Origin of Magnetic Field
11.5 Explanation of MEE in Supercapacitor
11.5.1 Magnetic Nature of the Material Used as an Electrode
11.5.2 Effect of the Lorentz Force on the Material
11.5.3 Domains Arrangement of the Electrode Material
11.5.4 Effect of the Lorentz Force on the Electrolyte
11.5.5 Magneto-Hydrodynamic Effect of the Electrolyte
11.6 Theoretical Interpretation of Magneto-Electric Supercapacitors
11.6.1 Existing General Theories
11.6.2 Solution of Diffusion Equation
11.6.3 Diffusion-Related Explanation of Magnetic Supercapacitors
11.7 Summary
References
12 Advancement in the Micro-supercapacitors: Synthesis, Design, and Applications
12.1 Introduction
12.2 Device Architecture Designing
12.3 Brief Introduction to the Reaction Mechanism
12.4 Device Fabrication Techniques
12.4.1 Screen Printing for Electrode Fabrication
12.4.2 Inkjet Printing for Micro-electrode Fabrication
12.4.3 Lithography for Micro-electrode Fabrication
12.4.4 Laser Scribing for Micro-electrode Fabrication
12.4.5 Mask-Assisted Filtering for Micro-electrode Fabrication
12.5 Patterning of Micro-electrodes
12.6 Micro-supercapacitor Systems
12.7 Application of MSCs
12.7.1 Energy Storage
12.7.2 Integration with Various Types of Sensors
12.7.3 Medical Assistant Examination
12.7.4 Alternating Current (AC) Line Filtering
12.8 Evaluation of Various Parameters of Supercapacitors
12.8.1 Necessary Details About the System to be Reported
12.8.2 Single Electrode Capacitance
12.8.3 Difference of Capacitance in Three-Electrode and Two-Electrode System
12.8.4 Operating Voltage
12.8.5 Micro- and Macro-Supercapacitors
12.8.6 Cycling Stability
12.8.7 Energy, Power, and Ragone Plot
12.8.8 Coulombic Efficiency—Coulombic Efficiency is the Factor that Determines the Rate Capability of the Supercapacitor Device
12.8.9 Determining the Percent of Diffusion Controlled and Surface Capacitance
12.9 Conclusions and Future Perspectives
References
13 Shape Memory Supercapacitors
13.1 Introduction
13.2 Shape Memory Alloy
13.2.1 High-Temperature Shape Memory Alloy
13.2.2 Magnetic Shape Memory Alloy
13.2.3 Phenomena of Transformation of Alloy
13.3 Shape Memory Polymer (SMP)
13.3.1 Shape Memory Principle of Polymer
13.3.2 Classification of SMP
13.4 Shape Memory Characterization Techniques
13.5 Design and Architecture of Structural Shape Memory Supercapacitor
13.5.1 1D Yarn/Fiber Type Supercapacitor
13.5.2 Planar and 2D Shape Memory Supercapacitor
13.6 Electrochemical Performance
13.7 Summary and Perspective
References
14 Self-healing Supercapacitors
14.1 Introduction
14.2 Self-healing Mechanism
14.2.1 Intrinsic Self-healing
14.2.2 Extrinsic Self-healing
14.3 Self-healing Materials
14.3.1 Self-healing Electrode for Supercapacitor Devices
14.3.2 Self-healing Electrolyte for Supercapacitor Devices
14.4 Conclusion
References
15 Optical Revolution with Sustainable Energy Framework
15.1 Introduction
15.2 Optics-Based Infrastructure
15.2.1 Optical Chips
15.2.2 Optical Devices
15.2.3 Integration of Supercapacitor
15.2.4 Fabrication Aspects
15.3 Sustainable Energy
15.3.1 Implementation Policy Aspects
15.4 Concluding Remarks
References
16 Recycling of Supercapacitor Materials
16.1 Introduction
16.2 Methodology of Recycling
16.2.1 Important Steps in Recycling
16.2.2 Processes Involved in Recycling Supercapacitors Materials
16.3 Recycling of Different Materials Used in Supercapacitor
16.3.1 Nanotubes and Organic Nanocrystals Materials Recycling
16.3.2 Graphene Electrode Materials Recycling from the Decayed Supercapacitor
16.4 Recycling of RuO2 from Decayed Supercapacitor
16.4.1 Pseudocapacitance of RuO2
16.4.2 Material and Method
16.4.3 Steps Involved in Recycling RuO2
16.4.4 Characterization of Extracted RuO2 via XRD
16.4.5 Electrochemical Characterization of RuO2-Based Hybrid Supercapacitor
16.4.6 The Percentage Recovery of RuO2
16.5 Conclusions
References
Index