Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Vol. 3: Sensors, Biosensors and Radiation Detectors

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The reference provides interdisciplinary discussion for diverse II-VI semiconductors with a wide range of topics. The third volume of a three volume set, the book provides an up-to-date account of the present status of multifunctional II-VI semiconductors, from fundamental science and processing to their applications as various sensors, biosensors, and radiation detectors, and based on them to formulate new goals for the further research. The chapters in this volume provide a comprehensive overview of the manufacture, parameters and principles of operation of these devices. The application of these devices in various fields such medicine, agriculture, food quality control, environment monitoring and others is also considered. The analysis carried out shows the great potential of II-VI semiconductor-based sensors and detectors for these applications.

  • Considers solid-state radiation detectors based on semiconductors of II-VI group and their applications;
  • Analyzes the advantages of II-VI compounds to develop chemical and optical gas and ion sensors; 
  • Describes all types of biosensors based on II-VI semiconductors and gives examples of their use in various fields.

Author(s): Ghenadii Korotcenkov
Publisher: Springer
Year: 2023

Language: English
Pages: 699
City: Cham

Preface
Contents
About the Editor
Part I: X-Ray Radiation Detectors
Chapter 1: Basic Principles of Solid-State X-Ray Radiation Detector Operation
1.1 Introduction
1.2 X-Ray Photoconductivity
1.2.1 X-Ray Interactions with Photoconductor
1.2.2 Ionization Energy and Signal Formation
1.2.3 X-Ray Photoconductors
1.3 X-Ray Spectroscopic Detectors
1.4 Flat-Panel X-Ray Image Detectors
1.4.1 Materials and Structures
1.4.2 Metrics of X-Ray Imaging Performances
1.4.2.1 X-Ray Sensitivity
1.4.2.2 Spatial Resolution
1.4.2.3 Noise and DQE
1.4.2.4 Image Lag and Ghosting
1.5 Position-Sensitive Semiconductor Detectors
References
Chapter 2: CdTe-/CdZnTe-Based Radiation Detectors
2.1 Introduction
2.2 Types of Hard Irradiation Detectors
2.3 General Criteria for Choosing the Optimal Material for Solid-State Detectors
2.4 Main Physical Characteristics of CdTe, ZnTe, and CZT and Their Application
2.5 Methods of Growth of the Bulk CdTe Crystals and Solid Solutions on Their Base
2.5.1 II-VI Compounds Phase Diagrams Features
2.5.2 Methods of Single Crystals Growth
2.5.2.1 Vapour Phase Growth
2.5.2.2 Solution Growth
2.5.2.3 Melting Growth
2.5.3 Structural Features of Single Crystals of CdTe and Its CZT Solid Solutions
2.6 Hard Irradiation Detectors Based on CdTe and CZT Single Crystals
2.6.1 X-Ray and Gamma Irradiation Detectors Based on Cadmium Telluride
2.6.2 Detectors Based on CZT Solid Solutions
2.7 Main Methods of Obtaining and Using CDTe, CZT, and CMT Films as Radiation Detectors
2.7.1 Main Methods of Deposition of CdTe, CZT, and CMT Films
2.7.2 Usage of the CdTe and CZT Films in Ionising Radiation Detectors
References
Chapter 3: ZnS-Based Neutron and Alpha Radiation Detectors
3.1 Introduction
3.2 Neutron Detection
3.3 Scintillation Detectors
3.4 ZnS-Based Phosphors
3.5 Neutron Detectors
3.6 Filters for Neutron Detectors
3.7 Market of Neutron Detectors
3.8 Fast Neutron Detectors
3.9 Devices Based on ZnS/6LiF Scintillators
3.10 Phoswich Detector
References
Chapter 4: ZnSe- and CdSe-Based Radiation Detectors
4.1 Introduction
4.1.1 Parameters Characterizing Scintillation Radiation Detectors
4.1.2 Materials Used in the Manufacture of Scintillation Radiation Detectors
4.2 Crystal-Based Solid Scintillation Detectors
4.2.1 Planar Detector
4.2.2 Well-Type Detector
4.2.3 Through-Hole Detector
4.3 Single and Polycrystalline ZnSe- and CdSe-Based Scintillators
4.3.1 Melt Growth Technique-Based Scintillators
4.3.2 Quantum Dot-Based Scintillators
4.4 Performance of Doped ZnSe- and CdSe-Based Radiation Detectors
4.5 Comparison of ZnSe/CdSe with Traditional Scintillators
4.6 Applications
4.7 Conclusion
References
Chapter 5: Medical Applications of II-VI Semiconductor-Based Radiation Detectors
5.1 Introduction
5.2 Nuclear Medicine
5.2.1 Single-Photon Emission Computed Tomography (SPECT)
5.2.2 Positron Emission Tomography (PET)
5.2.3 Computed Tomography (CT)
5.2.4 Detectors for CT, PET, and SPECT
5.2.5 Multimodal Systems
5.3 Radionuclide and Radiation Therapy
5.3.1 Nuclear Probes
5.4 Digital Radiography
5.4.1 Chest X-Ray Imaging
5.4.2 High-Resolution Dental Digital Radiography Systems
5.4.3 Mammography
5.4.4 Bone Densitometry
References
Part II: Electric and Electronic Chemical Sensors
Chapter 6: Introduction in Gas Sensing
6.1 Introduction
6.2 Gas Sensors Classification
6.3 II-VI Compounds as Gas-Sensitive Material and Their Gas Sensor Applications
6.3.1 II-VI Semiconductor-Based Conductometric Gas Sensors
6.3.2 II-VI Semiconductor-Based Optical Gas Sensors
References
Chapter 7: II-VI Semiconductor-Based Thin Film Electric and Electronic Gas Sensors
7.1 Introduction
7.2 Synthesis of Gas-Sensitive II-VI Semiconductors Films and Gas Sensor Fabrication
7.3 II-VI Semiconductors and their Gas Sensing Mechanisms
7.4 Factors that Influence the Gas Sensing Properties of II-VI Semiconductors
7.4.1 Size, Morphology, and Structure
7.4.2 Modifications: Doping, Surface Decoration, and Mixture of Components
7.4.3 Thermal and Light Activation
7.4.4 Stability and Operational Conditions
7.5 Key Metrics of Intrinsic II-VI Semiconductor-Based Gas Sensors
7.6 Conclusions
References
Chapter 8: Nanocomposite and Hybrid-Based Electric and Electronic Gas Sensors
8.1 Introduction
8.2 Recent Approaches to the Synthesis of Nanoparticles of II-VI Semiconductors
8.3 Synthesis of II-VI Semiconductor–Based Nanocomposites
8.4 Gas Sensors Based on II-VI Semiconductors/Metal Oxide Nanocomposites
8.4.1 Sensor Properties of II-VI Semiconductors/Metal Oxide Nanocomposites Under Thermal Activation
8.4.2 Sensor Properties of II-VI Semiconductors/Metal Oxide Nanocomposites Under Photoactivation
8.5 Gas Sensors Based on II-VI Semiconductors/Non-oxide Materials
8.6 Summary
References
Chapter 9: II–VI Semiconductor-Polymer Nanocomposites and Their Gas-Sensing Properties
9.1 Introduction
9.2 Gas Sensors Based on II–VI Compound-Polymer Composites: General Consideration
9.2.1 Gas-Sensing Mechanism and Measurement Parameters
9.2.2 Role of II–VI Semiconductor Nanoparticle and Polymer Concentration in Composite
9.2.3 Methods for the Formation of II–VI Compounds-Polymer Nanocomposite
9.3 Gas Sensors Based on II–VI Semiconductor-Polymer Nanocomposites
9.3.1 CdSe-Polymer Nanocomposite
9.3.2 CdS-Polymer Nanocomposite
9.3.3 CdTe-Polymer Nanocomposite
9.3.4 ZnSe-Polymer Nanocomposite
9.3.5 ZnS-Polymer Nanocomposite
9.3.6 ZnTe-Polymer Nanocomposite
9.4 Conclusion
References
Chapter 10: Nanomaterial-Based Electric and Electronic Gas Sensors
10.1 Introduction
10.1.1 Performance Parameters and Influence Factors for Nanomaterial-Based Electrical and Electronic Gas Sensors
10.1.2 Influence Factors: Advantages on Using II–VI Semiconductor Nanomaterials in Electric and Electronic Gas Sensors
10.1.3 Approaches to Optimise Chemical Gas Sensing Devices
10.2 II–VI Semiconductor Nanomaterials for Chemical Gas Sensors
10.2.1 0D Nanomaterials
10.2.2 1D Nanomaterials
10.2.3 2D Nanomaterials
10.2.4 3D Nanomaterials
10.2.4.1 3D Spatial Ensembles of 0D, 1D and 2D NSs
10.2.4.2 3D Nano- and Mesoporous Structures
10.2.5 Core/Shell Nanostructures
10.3 Summary and Outlook
References
Chapter 11: II–VI Semiconductor-Based Humidity Sensors
11.1 Introduction in Humidity Measurements
11.2 General View on the Mechanisms of Humidity Sensing
11.3 II–VI-Based Humidity Sensors
11.3.1 Conductometric RH Sensors
11.3.1.1 Thin Film RH Sensors
11.3.1.2 Nanowire-Based Sensors
11.3.1.3 Paper-Based RH Sensors
11.3.2 Capacitance RH Sensors
11.3.3 QCM-Based RH Sensors
11.4 Outlooks
References
Part III: Optical Sensors
Chapter 12: II–VI Semiconductor-Based Optical Gas Sensors
12.1 Introduction
12.1.1 Optical Methods for Gas Sensing
12.1.2 Performance Parameters and Figures of Merit
12.1.3 Suitability of II–VI Materials for Optical Gas Sensors
12.2 Photoluminescence-Based Gas Sensors
12.2.1 1D Nanostructures as Luminescence-Based Gas Sensor
12.2.2 Surface-Modified Single and Core-Shell (CSh) QDs for Luminescence-Based Gas Sensor
12.2.3 Embedded 1Ds and QDs, Composites, CSh in Matrix, and Other Special Forms
12.3 Fluorescence-Based Gas Sensors
12.3.1 Ratiometric and Colourimetric
12.4 Other Optical Methods of Gas Sensing
12.5 Surface Plasmon Resonance-Based Gas Sensors
12.6 Fibre Optic-Based Gas Sensors
12.7 Conclusion
References
Chapter 13: Spectroscopic Gas Sensing Systems
13.1 Introduction
13.2 Principle
13.2.1 Direct Absorption Spectroscopy
13.2.2 Wavelength Modulation Spectroscopy
13.2.3 Frequency Modulation Spectroscopy
13.3 System Configurations
13.3.1 Pump Suction System (Sampling Sensing System)
13.3.1.1 Multipass Cell-Based System
13.3.1.2 Hollow Waveguide-Based Sensor
13.3.2 Diffusion Sensors
13.3.3 Open Path Sensing
13.3.3.1 Open Path Detection with Retroreflectors
13.3.3.2 Standoff Sensing Without Retroreflectors
13.3.4 Spectroscopic Imaging
13.4 II–VI Laser Application in Spectroscopic Gas Sensing
13.5 Prospects for II–VI Laser in Spectroscopic Gas Sensing
References
Chapter 14: Luminescence and Fluorescence Ion Sensing
14.1 Introduction
14.2 Optical QDs-Based Ion Sensors
14.3 Mechanisms of Operation of Ion Sensors Based on QDs
14.4 Ratiometric Ion Sensors
14.5 Implementation of Luminescence and Fluorescence II–VI Semiconductor QDs-Based Ion Sensors
14.5.1 Cu Ions Sensing
14.5.2 Hg Ion Detection
14.5.3 Pb2+ Ion Sensing
14.5.4 Cr Ion Sensing
14.5.5 Other Metal Ions
14.5.6 QD-Based pH Sensing
14.6 Summary
References
Chapter 15: Photoelectrochemical Ion Sensors
15.1 Introduction
15.1.1 Photoelectrochemical Sensors
15.1.2 Principle of Photoelectrochemical Sensor
15.2 Progress in Photoactive Sensing Materials
15.2.1 Metal Chalcogenides
15.2.1.1 CdS
15.2.1.2 CdSe
15.2.1.3 CdTe
15.2.1.4 Other Chalcogenides
15.2.1.5 II–VI Semiconductor-Based Quantum Dots
15.2.2 Other Materials
15.2.2.1 Metal Oxides
15.2.2.2 Carbon-Based Materials
15.2.2.3 Dichalcogenides
15.2.2.4 Hybrid Materials
15.3 Applications of PEC Sensors-Detection of Heavy Metal Ions
15.3.1 Lead (Pb) Ions
15.3.2 Mercury (Hg) Ions
15.3.3 Chromium (Cr) Ions
15.3.4 Cadmium (Cd) Ions
15.3.5 Copper (Cu) Ions
15.4 Conclusions
References
Chapter 16: II–VI Semiconductor-Based Optical Temperature Sensors
16.1 Introduction
16.1.1 Principles (Methods) of Operation and Figures of Merit
16.1.2 Applications of Particularly Optical TS
16.2 II–VI Materials for Luminescence-Based TS
16.2.1 Importance and Suitability of II–VI Semiconductors for Luminescence-Based TS
16.2.2 Single QDs and Core-Shell (CSh) QDs for Luminescence-Based TS
16.3 Embedded QDs Composites in CSh Matrix for Luminescence-Based TS
16.4 Ratiometric, Colorimetric and Lifetime Fluorescence-Based Optical TS
16.5 Fibre Optic and Surface Plasmon Resonance-Based TS
16.5.1 Fibre Optic-Based TS
16.5.2 Surface Plasmon Resonance-Based TS
16.6 Thermal Imaging with II–VI Materials
16.7 Conclusion and Future Prospective
References
Part IV: Biosensors
Chapter 17: Introduction to Biosensing
17.1 Introduction
17.2 Biosensors. What Is It?
17.3 Types of Biosensors
17.3.1 Electrochemical Biosensors
17.3.2 Physical Biosensors
17.3.3 Optical Biosensors
17.3.4 Sensors Based on Specific Biological Material
17.3.4.1 Enzyme Biosensor
17.3.4.2 DNA Biosensors or Aptasensors
17.3.4.3 Immunosensors or Antibody-Based Biosensors
17.3.4.4 Protein Biosensors
17.3.4.5 Cell-Based Biosensors
17.4 Features of Biosensor Design
17.4.1 Bio-Interfaces
17.4.2 Nanomaterial-Based Biosensors
17.4.2.1 Biosensors Using Semiconductor QDs
17.4.3 Biosensor Using Metallic Nanoparticles
17.4.4 Biosensor Using Polymers and Polymeric Nanoparticles
17.4.5 Biosensor Using Core-Shell Materials
17.4.6 Biochips
17.5 Applications of Biosensors
17.5.1 Biosensor Detection of Diseases
17.5.2 Biosensor for Detection of Toxins and Pathogens
17.5.3 Biosensor for Environmental Monitoring
17.5.4 Biosensor for Food Quality Control and Agriculture
17.6 Conclusion
References
Chapter 18: Fluorescent Biosensors Based on II–VI Quantum Dots
18.1 Fundamentals of Biosensors and Fluorescence Biosensors
18.2 Fluorescent Biosensor for Clinical Diagnostics, Treatment of Diseases, and Health Care
18.2.1 Reading Signals by Measuring the Fluorescence Intensity
18.2.2 Reading Signals by Imaging the Fluorescence QDs-Bound Analytes
18.3 Fluorescent Biosensors for Detection of Pesticides and Growth-Promoting Hormone in Agricultural Productions
18.4 Fluorescent Biosensors for Food Safety
18.5 Fluorescent Sensors for Detecting Heavy Metals in Environmental Samples
18.6 Fluorescent Imaging for Forensic Science and Criminal Investigation
18.7 Conclusions
References
Chapter 19: QDs-Based Chemiluminescence Biosensors
19.1 Introduction
19.2 QDs and Core/Shell QDs
19.3 The Functionalisation of Quantum Dots
19.4 Chemiluminescence Mechanisms of QDs
19.4.1 Direct Chemiluminescence
19.4.2 Chemiluminescence Catalysts
19.4.3 Chemiluminescent Energy Acceptor
19.5 Advantages and Disadvantages of QD-Based Chemiluminescence Sensors
19.6 Applications of QDs-Based Chemiluminescence
19.6.1 Detection of Small Biological Molecules
19.6.2 Detection of Proteins
19.6.3 Detection of DNA
19.6.4 Detection of Metal Ions
19.6.5 Determination of Enzyme Activity
19.7 Conclusion
References
Chapter 20: Electrochemiluminescent Biosensors Based on II–VI Quantum Dots
20.1 Introduction
20.2 ECL Mechanism of II–VI Quantum Dots
20.3 ECL Signal Transduction Strategy
20.4 Applications in ECL Biosensor
20.4.1 Immunosensors
20.4.2 Aptasensor
20.4.3 Genosensor
20.4.4 MIP Sensor
20.5 Conclusions and Perspectives
References
Chapter 21: Electrochemical Biosensors
21.1 Introduction
21.2 Electrochemical Techniques Used in Biosensors
21.2.1 Voltammetry
21.2.2 Amperometry
21.2.3 Impedimetry
21.3 Electrochemical Sensing Platforms
21.3.1 Non-portable Platforms
21.3.2 Portable Platforms
21.3.3 Steps for Fabrication of an Electrochemical Biosensor
21.4 Role of Nanomaterials in Electrochemical Biosensors
21.5 Biosensing Applications of II–VI Semiconductor-Based Electrochemical Sensors
21.6 Conclusion and Future Outlook
References
Chapter 22: Photoelectrochemical Biosensors
22.1 Introduction
22.2 Cd-Based Semiconductors in Photoelectrochemical Bioanalysis
22.2.1 Cd-Based Sensors for Nucleic Acids and Other Biological Samples
22.2.2 Cd-Based PEC Immunosensors and Combination with Immunoassay Tests
22.2.3 Cd-Based Aptasensors
22.3 Zn-Based Photoelectrochemical Biosensors
22.3.1 Zn Sulphides and Selenides for Biological Samples Sensing
22.3.2 Zn-Based PEC Biosensors Designed for Pollutants
22.3.3 Zn-Based PEC Immunosensors
22.4 Concluding Remarks
References
Chapter 23: II–VI Semiconductor QDs in Surface Plasmon Resonance Sensors
23.1 Introduction: Principles of Surface Plasmon Resonance (SPR)
23.2 SPR-Based Biosensors
23.3 SPR in II–VI Semiconductor QDs
23.3.1 Theory for Optical Properties of Core–Shell NP System
23.4 SPR-Enhanced Optical Gas Sensors Based on II–VI Semiconductor QDs
23.5 SPR-Based Biosensors Functionalised with II–VI Semiconductor QDs
23.6 Conclusions and Future Directions
References
Chapter 24: Biomarkers and Bioimaging and Their Applications
24.1 Introduction
24.2 Research in Upconversion and Downconversion with II–VI Semiconductor Nanophosphors
24.3 Surface Modification of Luminescent Nanoparticles
24.4 Biorecognition and Bioimaging for Cell Therapy with Nanophosphors
24.4.1 In Vitro Bioimaging for Cell Therapy with Nanophosphors
24.4.2 In Vivo Bioimaging for Cell Therapy with Nanophosphors
24.5 Band Structure Modelling of Nanophosphors
24.6 Clinical and Pre-clinical Studies for Bioimaging
24.7 Future Direction and Conclusion
References
Chapter 25: Biosensors Based on II–VI Semiconductor Quantum Dots for Health Protection
25.1 Introduction: II–VI Semiconductor Quantum Dots-Based Biosensors for Health Protection
25.2 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Pathogenic Bacteria
25.3 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Toxic Materials
25.4 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Environmental Pollutants
25.5 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Pesticide
25.6 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Allergens
25.7 Summary
References
Chapter 26: Application of II–VI Semiconductor-Based Biosensors in Nanomedicine and Bioanalysis
26.1 Introduction
26.1.1 Groups II–VI Quantum Dots
26.2 QDs in Nanomedical and Bioanalytical Applications
26.2.1 QDs-Based Therapy and Drug Delivery Approaches
26.2.2 QDs in Biosensing
26.2.2.1 Electrochemical Applications of QDs in Bioanalysis
26.2.2.2 Photo-Electrochemical Applications of QDs in Biosensing
26.2.2.3 Applications of QDs in Optical Biosensing
26.2.2.4 Detection of Other Specific Targets
26.3 Conclusions and Perspectives
References
Chapter 27: Specific Applications of II–VI Semiconductor Nanomaterials-Based Biosensors for Food Analysis and Food Safety
27.1 Introduction
27.2 II–VI Semiconducting Nanomaterials for Food Analysis
27.2.1 Detection of Pathogenic Bacteria
27.2.2 Detection of Pesticides
27.2.3 Detection of Amino Acids
27.2.4 Detection of Organic Compounds
27.2.5 Detection of Small Molecules Mycotoxins
27.2.6 Detection of Other Analytes
27.3 Challenges and Limitations
27.4 Conclusions and Future Trends
References
Index