Handbook of Functionalized Nanostructured MXenes: Synthetic Strategies and Applications from Energy to Environment Sustainability

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book covers the various aspects of MXenes nanomaterials and its composites from the fabrication to the potential applications in energy devices, sensors, and environmental remediation. MXenes are two-dimensional (2D) transition metal carbides and nitrides which contains novel combination of properties including great conductivity and mechanical, thermal features of transition metal carbide and nitrides. In addition, MXenes nanomaterials possess high surface area, novel morphology, and layered structure and the functionalized of its surfaces gives it excellent hydrophilic characteristics and high absorption of electromagnetic radiations making them versatile materials for various applications. The beginning part of the book gives an in-depth literature covering the fundamental principles, fabrication, self-assembling strategies of nano-engineered MXenes, and their composites materials. The later chapters describe the chemical functionalization of  MXenes nanomaterials for diversified applications such as electromagnetic shielding, energy storage devices (super capacitors, lithium ion batteries, CO2 capture, optical switching, transistors), photo catalysis, drug delivery, implants, tissue engineering, water purification, and sensing applications. It demonstrates that MXene-based advanced architectures promote continuous innovations and provide driving force in different fields particularly in environmental remediation and energy storage devices. This book is essential reading for all chemists, biologists, physicists, and environmental scientists working in the field of nanotechnology, energy, and environmental chemistry. It helps academics and professionals to polish their knowledge with the latest described data. It also helps professionals in developing innovative technologies by keeping in mind the applications of functionalized nanostructured MXenes.

Author(s): Komal Rizwan, Anish Khan, Abdullah Mohammed Ahmed Asiri
Series: Smart Nanomaterials Technology
Publisher: Springer
Year: 2023

Language: English
Pages: 388
City: Singapore

Preface
Contents
About the Editors
Introduction to MXenes
1 Introduction
2 Synthesis of 2D MXenes
3 Application of MXenes
3.1 Sensors
3.2 Drug Delivery Applications
3.3 Photo/Chemotherapy of Cancer
3.4 Tissue Engineering
3.5 Bioimaging
3.6 Antibacterial Agent
3.7 Environmental Applications
4 MXenes Incorporated Membranes
5 Conclusions
References
Structural Design, Properties, and Synthesis of Original MXenes
1 Two-Dimensional Materials
2 MXenes
2.1 Preparation of MXenes
2.2 Properties of MXenes
2.3 Applications of MXenes
3 Conclusion
References
Structural Design and Synthesis of Elemental Doped MXenes and MXenes-Based Composites
1 What Are MXenes?
2 Structural Design of MXenes
3 Types of MXenes
3.1 Elemental Doped MXenes (EDMs)
3.2 MXenes-Based Composites (MBCs)
3.3 Applications of MXenes
4 Conclusion
References
Functionalized MXene-Based Polymer Composites
1 Introduction
2 Structures and Properties
2.1 Polyvinyl Butyral Composites of MXene
2.2 UHMWPE Composites of MXene
2.3 Polyether Sulfone Composites of MXene
2.4 Chitosan Composites of Mxene
3 Applications of MXene Polymer Composites
3.1 Energy Storage
3.2 Biomedical Applications
3.3 Sensing Applications
4 Conclusion
References
Fabrication and Structural Design of MXene-Based Hydrogels
1 Introduction
2 Overview of the MXene and MXene-Based Hydrogel
3 Fabrication and Gelation Method of MXene-based Hydrogel
3.1 MXene Crosslinked with MXene to Form Hydrogel (Total MXene Hydrogel)
3.2 MXene Crosslinked with Metal Ions to Form Hydrogel
3.3 MXene-Based Micellar Hydrogels
3.4 MXenes Crosslinked with Polymer to Form Hydrogels
3.5 MXene-Based Nanocomposite Hydrogel
3.6 MXenes Crosslinked with Graphene
4 Applications of MXene-Based Hydrogels
5 Conclusion
References
Emerging Trends of MXenes in Supercapacitors
1 Introduction
2 Synthesis of MXenes
3 Supercapacitors
3.1 Electric Double-Layer Capacitors
3.2 Pseudocapacitors
3.3 Hybrid Supercapacitors
4 MXenes in Supercapacitors
5 Conclusion and Outlook
References
Recent Advancements in MXene-Based Lithium-Ion Batteries
1 Introduction
2 History of Lithium-Ion Battery
3 Different Types of Lithium-Ion Batteries
3.1 Primary Lithium-Ion Batteries
3.2 Secondary Lithium-Ion Batteries
4 Advantages of Lithium-Ion Batteries
5 Disadvantages Lithium-Ion Batteries
6 Early Lithium-Ion Batteries
7 Present Lithium-Ion Batteries
8 Future of Lithium-Ion Batteries
9 Important Elements of Lithium-Ion Batteries
9.1 Electrodes
9.2 Separators
10 How to Secure Lithium-Ion Batteries
11 MXene Energy Applications and LIBs’ Performance Enhancement
11.1 Organic Acid as a Lithium-Ion Reductant
11.2 Titanium Carbide Lithium-Ion Battery
11.3 Nitrogen as an Anode to Enhance Lithium-Ion Batteries’ Capacity
11.4 Zinc Anode for Enhancing the Capacity of LIBs
11.5 Strontium Anode in LIBs
11.6 Vanadium Carbide MXene Anode for LIBs
11.7 FeOOH/MXene Enhances the LIBs
11.8 Lithium Complex Deposition on MXene Surface
11.9 Nanostructured Material of MXene Enhances the Effect of LIBs
12 Heat Role in Lithium Batteries
13 Conclusion
References
MXene-Based Sodium-Ion Batteries
1 Energy Storage Devices
2 Sodium-Ion Batteries
3 Anode Materials for Sodium-Ion Batteries
4 MXene Structure
5 MXene-Based Sodium-Ion Batteries
5.1 Sodium Storage of Pure MXene
5.2 Sulfide-Based MXene Materials to Store Na+
5.3 Oxide-Based MXenes to Store Na+
5.4 Sodium Storage of MXene-Carbon Composites
5.5 Miscellaneous MXene Materials to Store Na+
6 Conclusion
References
Design and Applications of MXene-Based Li–S Batteries
1 Introduction
2 Electrochemical Concepts and Challenges for Lithium–Sulfur Batteries
3 Free-Standing Networks for Li–S Batteries
3.1 Free-Standing Network for Sulfur Cathode
3.2 Functional Interlayers Based on Free-Standing Networks
3.3 Anode Protection Based on Free-Standing Networks
4 Introduction of MXenes
4.1 2D/3D MXenes
5 Electronic and Mechanical Aspects of MXenes
6 MXene Interactions with Sulfur
7 Fundamental Understanding of MXenes by Theoretical Calculations
8 Synthesis of MXenes
9 Assembling of MXenes
10 Administration of MXenes in Lithium–Sulfur Batteries
10.1 As a Sulfur Host
10.2 As Functional Separator Coatings
10.3 As Lithium Deposition Host
11 Summary and Future Outlook
References
Nanostructured MXenes for Hydrogen Storage and Energy Applications
1 Introduction
2 Importance of 2D Materials
2.1 MXenes: A Newfangled 2D Nanostructure
2.2 Applications of MXenes
2.3 Characteristics of MXenes
3 Methods for MXenes Synthesis
3.1 Hydrofluoric Acid Etching
3.2 In-Situ Hydrofluoric Acid-Forming Etching
3.3 Methods of Electrochemical Etching
3.4 Methods of Alkali Etching
4 Current Methods for Storing H2
4.1 Physical Storage
5 Chemical Storage
6 Storage of H2 in MXenes
7 Conclusion and Prospects
References
Diverse Applications of MXene Composites for Electrochemical Energy Storage
1 Introduction
2 MXene Composites
2.1 Applications of MXene Composites
2.2 Applications in Electrochemical Energy Storage
3 Conclusion
References
Potential of MXenes in Photocatalysis
1 Introduction
2 Fundamental Principle of Photocatalysis
3 Applications of MXenes-Based Photocatalysts in Degradation of Organic Pollutants
4 Applications of MXenes-Based Photocatalysts in Production of Energy Sources
5 Conclusions
References
Efficacy of MXene-Based Materials in the Removal of Gases
1 Introduction
2 Application of MXene-Based Materials for Gas Abatement
2.1 CO2 Abatement
2.2 Methane Abatement
2.3 Hydrogen Abatement
2.4 Other Gas Contaminants
3 Cost Analysis
4 Membrane Longevity
5 MXene Reusability
6 Arguments for Potential Uses
7 Conclusions
References
Environmental Remediation of Heavy Metals Through MXene Composites
1 Introduction
2 Synthesis of MXenes
3 Structure of MXenes Entailed for Heavy Metal Removal
3.1 Mono M Elements
3.2 Solid Solutions
3.3 Ordered Out of Plane Double M Elements
3.4 Ordered in Plane Double M Elements
3.5 Vacancies Ordered
3.6 Vacancies Randomly Distributed
4 Properties of MXenes Involved in Heavy Metal Adsorption
4.1 Surface Functional Moieties
4.2 Electronic Structure
4.3 Electrical Properties
4.4 Mechanical Properties
4.5 Magnetic Properties
4.6 Thermal Properties
4.7 Optical Properties
5 Structural Modifications in MXenes for Heavy Metal Uptake
5.1 Intercalation
5.2 Delamination
5.3 Surface Modifications
5.4 Doping
5.5 Composite Formation
6 Heavy Metal Remediation by MXenes
6.1 Remediation of Cr6+
6.2 Remediation of Pb2+
6.3 Remediation of Cu2+
6.4 Remediation of Hg2+
6.5 Remediation of Cd2+
6.6 Remediation of Miscellaneous Heavy Metal Ions
7 Mechanism of Adsorption
7.1 Inner-Sphere Complexation
7.2 Ion-Exchange
7.3 Redox Reaction
7.4 Multiple Chemical Combinations
8 Conclusion
References
Advanced Approach of MXene-Based Materials in Removal of Radionuclides
1 Introduction
2 Application of MXenes for Adsorptive Removal of Radionuclides
2.1 Removal of Cesium (Cs)
2.2 Removal of Palladium (Pd)
2.3 Removal of Barium
2.4 Adsorptive Removal of Uranium
2.5 Adsorptive Removal of Thorium
3 Conclusion and Outlook
References
Functionalized Mxene Conjugates in Removal of Pharmaceuticals and Other Pollutants
1 Introduction
2 Synthesis Technique of the MXenes
3 Structure Pattern of MXenes
4 Properties
4.1 Optical Properties
4.2 Mechanical Properties
4.3 Oxidative/Thermal Stability
4.4 Hydrophilic Properties
5 Applications
5.1 Application for the Removal of the Pharmaceutical Waste
5.2 Removal of Dyes
5.3 Removal of Phenolics
5.4 Removal of Antibiotics
5.5 Removal of Radionuclides
6 Conclusion
References
Potential Mitigation of Dyes Through Mxene Composites
1 Introduction
2 Photocatalytic Degradation of Organic Dyes
2.1 Photocatalytic Degradation of Methylene Blue Through MXene Composites
2.2 Photocatalytic Degradation of Congo Red (CR) Dye via MXene Composites
2.3 Photocatalytic Degradation of Methyl Orange (MO) Dye Through MXene Composites
2.4 Photocatalytic Degradation of Rhodamine B (RhB) Dye via MXene Composites
2.5 Removal of Dyes by Adsorption Through MXene-Based Composites
3 Conclusion
References
MXene-Based Polymeric Nanocomposites for Pressure/Strain Sensing
1 Introduction
2 Synthesis Routes
2.1 In Situ Polymerization
2.2 Template Methods
2.3 Self-assembly Methods
2.4 Coating Approaches
2.5 Spinning Methods
2.6 3D Printing
3 Sensing Mechanism
4 Pressure/Strain Sensing Using MXene–Polymer Nanocomposites
4.1 1D Fiber Structures
4.2 2D Planar Structures
4.3 3D Architectures
5 Conclusion
References
Biosensing Applications of MXene-Based Composites
1 Introduction
2 Biosensing Application of MXene Biocomposites
2.1 Cytocompatibility
2.2 MXene-Based Electrochemical Biosensors
2.3 MXene Based Optical/Fluorescent Biosensors
2.4 Enzyme-Based Biosensors
2.5 Biosensors for Detection of Cancer Biomarkers
2.6 Cancer Theranostic Biosensors
2.7 MXene Quantum Dots as Biosensors
2.8 Applications in Drug Delivery
2.9 Antimicrobial Activity
2.10 Acetone-Based Sensors
2.11 MXene-Based Sensors for Pharmaceutical
3 Conclusion
References
Miscellaneous Applications of Other Mxene-Based Sensors
1 Introduction
2 Structural Features of Mxenes
3 Application of Mxene-Based Sensors
4 Tactile Sensors
5 Piezoresistive Tactile Sensor Based on Ti3C2Tx
6 Polydimethylsiloxane (PDMS)/MXene Films Tactile Sensors for Electronic Skin
7 Ti3C2Tx Nanosheet-Immersed Polyurethane Sensor for Biomonitoring
8 MXenes and 2D Transition Metal Dichalcogenides Sensor for Volatile Organic Compounds (VOCs) Detection
9 MXene-Based Wearable Biosensor for in Vitro Perspiration Analysis
10 Mxene-Based Fire Detection Sensor
References
Toxicology, Stability, and Environmental Impacts of MXenes and Its Composites
1 Toxicity of MXenes
1.1 MXenes Toxicity In-vitro
1.2 MXene Toxicity In-vivo
1.3 Toxicity Mechanisms
2 Stability of MXenes
2.1 Energy Storage Applications
2.2 Environmental Stability of MXenes
2.3 Structure Transition Under Different Environmental Conditions
2.4 Preparation of Stable MXenes with Various Terminated Group
2.5 Degradation at Room Temperature
2.6 Degradation Under Hydrothermal Condition
2.7 Optimization of the MAX Phase Synthesis
2.8 Modification of MXenes Structure by Changing the Lateral Size
2.9 Function of MXenes in Wearable Sensor
2.10 Physical Sensor
2.11 Strain Sensor
3 Environmental Impact of MXenes
3.1 Heavy Metal Ion Adsorption
3.2 Radionuclide Pollutant Adsorption
3.3 Gaseous Contaminant Adsorption
3.4 Adsorption of Other Pollutants
4 Conclusion
References
Challenges and Future Perspectives of Mxenes
1 Introduction
1.1 Challenges
2 Future Outlook
3 Conclusion
References