Generation, Transmission, Detection, and Application of Vortex Beams

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on the key technologies supporting orbital-angular-momentum multiplexing communication: generation, transmission, detection, and application of vortex beams. A series of methods for generating vortex beams are described and compared in detail. Laguerre-Gaussian and Bessel-Gaussian beams are taken as examples to introduce the transport properties of vortex beams in atmospheric turbulence. The authors show that superposition of vortex beam state, interference, diffraction, and grating can realize the detection of the topological charge of vortex beams. The authors also introduce the application of vortex beams in optical communication and the transmission characteristics of partially coherent vortex beams in atmospheric turbulence. Finally, the authors describe vortex beam information exchange and channel reconstruction.

Author(s): Xizheng Ke
Series: Optical Wireless Communication Theory and Technology
Publisher: Springer-Science Press
Year: 2023

Language: English
Pages: 424
City: Beijing

Preface
Introduction
Contents
About the Author
1 Introduction
1.1 Optical Vortices
1.2 Orbital Angular Momentum
1.2.1 Background and Meaning
1.2.2 Principle of OAM Multiplexing Technology
1.2.3 OAM Multiplexing Communication System Model
1.3 Vortex-Beam Generation
1.3.1 Space-Generation Methods
1.3.2 Fiber-Generation Methods
1.3.3 Comparison of Vortex-Beam Generation Methods
1.4 Transmission Characteristics of Vortex Beams
1.4.1 Atmospheric-Turbulence Effect
1.4.2 Research Methods of Beam-Propagation Characteristics
1.4.3 Transmission Characteristics of Vortex Beams
1.5 Transmission Characteristics of Vortex Beams
1.5.1 Traditional Adaptive-Optics Correction Technology
1.5.2 AO Correction Without a Wavefront Sensor
1.5.3 Vortex Beam Phase Distortion Correction
1.6 Separation and Detection of Vortex Beams
1.6.1 Fork Grating
1.6.2 Interference Characteristics
1.6.3 Diffraction Characteristics
1.6.4 Reconstructed Wavefront
References
2 Vortex-Beam Spatial-Generation Method
2.1 Basic Principle of Vortex Beams
2.2 Types of Vortex Beams
2.2.1 Laguerre–Gaussian Beams
2.2.2 Bessel Beams
2.2.3 Hermite–Gaussian Beams
2.3 Vortex-Beam Generation Methods
2.3.1 Computer-Generated Hologram Method
2.3.2 Mode-Conversion Method
2.3.3 Spiral-Phase-Plate Method
2.3.4 Spatial Light Modulator Method
2.3.5 Optical-Waveguide Device-Conversion Method
2.4 Higher-Order Radial LG Beams
2.5 Generation of Fractional Vortex Beams
2.5.1 Principle of LG-Beam Preparation by the Holographic Method
2.5.2 Experimental Study on the Orbital Angular Momentum of Fractional Laguerre–Gaussian Beams
References
3 Vortex-Beam Generation Using the Optical-Fiber Method
3.1 Introduction
3.2 Optical-Fiber Mode Theory
3.2.1 Wave Equation
3.2.2 Vector Modes in Optical Fiber
3.2.3 Guide-Mode Cutoff and Distance Cutoff
3.2.4 Scalar Modulus Under a Weakly-Conducting Approximation
3.2.5 Analysis of the Principle of Using Optical Fiber to Generate Vortex Light
3.3 Analysis of the Influencing Factors of a Vortex Light Generated by Optical Fiber
3.3.1 Influence of the Incident Wavelength on the Vortex Light
3.3.2 Influence of the Refractive-Index Difference Between the Inside and Outside of the Optical Fiber on the Vortex Light
3.3.3 Influence of the Fiber-Core Radius on the Vortex Light
3.3.4 Effect of the Incident Angle on the Excitation Efficiency of Vortex Light
3.3.5 Effect of Off-Axis Incident Fiber on Vortex Light
3.4 Experiments Using Few-Mode Fibers to Generate Vortex Light
3.4.1 Principle of Using Few-Mode Fibers to Generate Vortex Light
3.4.2 Analysis of the Excitation Efficiency of Vortex Light
3.4.3 Experimental Research
3.4.4 Phase Verification
3.5 Changing the Fiber Structure to Produce Vortex Light
3.5.1 Structural Design
3.5.2 Influence of the Low-Refractive-Index Layer on OAM Mode
References
4 Superposition Characteristics of High-Order Radial Laguerre–Gaussian Beams
4.1 Introduction
4.2 Influence of the Radial Index on the Superposition State of High-Order Radial LG Beams
4.2.1 Interference and Superposition of LG Beams with the Same Topological Charge
4.2.2 Interference and Superposition of LG Beams with the Same Radial Index
4.2.3 Interference Superposition of LG Beams with Arbitrary Radial Indices and Topological Charges
4.3 Influence of the Transmission Distance on the Superposition State of High-Order Radial LG Beams
4.4 Influence of the Beam-Waist Radius on the Superposition State of High-Order Radial LG Beams
4.5 Effect of Off-Axis Parameters on the Superposition State of High-Order Radial LG Beams
4.6 Experiment on a Superimposed High-Order Radial LG Beam
4.6.1 Experimental Device
4.6.2 Hologram Production
4.6.3 Analysis of Results
References
5 Transmission Characteristics of Vortex Beams
5.1 Introduction
5.2 Transmission of LG Beams in Atmospheric Turbulence
5.2.1 Theoretical Analysis
5.2.2 Propagation Characteristics of an LG Beam Passing Through a Slanted Channel of Atmospheric Turbulence
5.3 Transmission of Bessel–Gaussian Beams in Space
5.3.1 Theory of BG-Beam Propagation in Turbulence
5.3.2 Characteristics of a BG Beam Passing Through an Atmospheric-Turbulence Channel
5.4 Research on the Stability of Orbital Angular Momentum in the Slanted Propagation of a Vortex Beam
5.4.1 Comparison of the Light-Intensity Distribution of Vortex Beams
5.4.2 Comparison of the Harmonic Components of a Vortex Beam
References
6 Adaptive-Optics Correction Technology
6.1 Introduction
6.2 Basic Adaptive-Optics Principles
6.2.1 Adaptive-Optics Correction Technology
6.2.2 Shack–Hartmann Algorithm
6.2.3 Phase-Recovery Algorithm
6.2.4 Stochastic Parallel Gradient-Descent Algorithm
6.2.5 Phase-Difference Algorithm
6.3 Wavefront Correction of an OAM Beam After Passing Through Atmospheric Turbulence
6.3.1 Phase-Recovery Algorithm
6.3.2 Stochastic Parallel Gradient-Descent Algorithm
6.3.3 Phase-Difference Algorithm
6.4 Experimental Research
6.4.1 Phase-Recovery Algorithm
6.4.2 Stochastic Parallel Gradient-Descent Algorithm
6.4.3 Phase-Difference Algorithm
References
7 Crosstalk Analysis of an OAM-Multiplexing System Under Atmospheric Turbulence
7.1 Introduction
7.2 Propagation Theory of OAM Beams in Atmospheric Turbulence
7.2.1 Multiphase-Screen Transmission Method
7.2.2 Random Phase-Screen Generation
7.2.3 Crosstalk of an OAM-Multiplexed Beam in Atmospheric Turbulence
7.3 Analysis of the Intensity Phase of an OAM-Multiplexed Beam in Atmospheric Turbulence
7.3.1 Formation of an OAM-Multiplexed Beam
7.3.2 Influence of Different Transmission Conditions on the Light Intensity and Phase
7.4 Spiral-Spectrum Characteristics of OAM-Multiplexed Beams Under Atmospheric Turbulence
7.4.1 OAM-Multiplexed Beam Spiral-Spectrum Theory
7.4.2 Spiral-Spectrum Analysis Under Different Transmission Conditions
7.5 Analysis of the Bit Error Rate of an OAM-Multiplexed Beam Under Atmospheric Turbulence
7.5.1 Bit-Error-Rate Theory of OAM-Multiplexed Beams
7.5.2 Analysis of the Bit Error Rate Under Different Transmission Conditions
7.6 Experiment on the Influence of Atmospheric Turbulence on an OAM-Multiplexed Beam
7.6.1 Principle of the Experiment
7.6.2 Analysis of Results
References
8 Properties of a Superimposed Vortex Beam
8.1 Introduction
8.2 Fabrication of the Vortex-Beam Superposition State Using a Grating Method
8.2.1 Theoretical Analysis
8.2.2 Grating Superposition
8.3 Double OAM Beam Prepared Using the Phase-Superposition Method
8.3.1 Theoretical Analysis
8.3.2 Characteristic Analysis of Superimposed Vortex Beams with Different Topological Charges
8.4 Vortex-Beam Superposition Interference Experiment
8.4.1 Experimental Design
8.4.2 Experiment of the Grating-Superposition Method
8.4.3 Result Analysis of the Grating-Superposition Method
8.4.4 Experiment on the Phase-Superposition Method
8.4.5 Results and Analysis of the Phase-Superposition Method
References
9 Vortex-Beam Detection
9.1 Introduction
9.2 Separate Detection of OAM States Using the Coordinate-Transformation Method
9.2.1 Theoretical Foundations
9.2.2 Superimposed Light-Field Distribution for Different Topological-Charge Numbers
9.2.3 OAM-State Multiplexing System Based on the Coordinate-Transformation Method
9.3 Using a Grating to Detect the Angular Momentum of a Vortex-Light Orbit
9.3.1 Transmission Function of a Grating and Its Representation
9.3.2 Vortex Light Field and Its Diffraction
9.3.3 Phase Correction and the Fan-Out Technique
9.3.4 Periodic-Gradient Grating
9.4 Using Interferometry to Detect the Vortex-Light Phase
9.4.1 Vortex Self-Interference Detection Method
9.5 Measuring the Vortex Optical Phase Using Diffraction Methods
9.5.1 Triangle Diffraction Method
9.5.2 Square-Hole Diffraction Method
9.5.3 Single-Slit-Diffraction Detection Method
9.5.4 Circular-Hole-Diffraction Detection Method
9.6 Summary
References
10 Diffraction Characteristics of a Vortex Beam Passing Through an Optical System
10.1 Diffraction Model of a Vortex Beam Passing Through a Mak-Cass Antenna
10.1.1 Mak-Cass Antenna Structure
10.1.2 Mak-Cass-Antenna Diffraction Model
10.2 Analysis of the Diffraction Characteristics of a Vortex Beam Passing Through a Mak-Cass Antenna Optical System
10.2.1 Diffracted Light-Field Model
10.2.2 Diffraction Spots and Phase Distribution
10.2.3 Spiral-Spectrum Distribution
10.2.4 Transmission Efficiency of the Mak-Cass Antenna
10.3 Analysis of the Diffraction Characteristics of a Vortex Beam Passing Through an Aperture Diaphragm
10.3.1 Theoretical Model of Aperture-Diaphragm Diffraction
10.3.2 Theoretical Diffraction Analysis of a Vortex Beam Passing Through a Diaphragm
10.3.3 Analysis of the Experimental Diffraction Pattern of a Vortex Beam Passing Through an Aperture
10.3.4 Aperture-Diaphragm Detection-Effect Comparison
10.4 Summary
References
11 Propagation Characteristics of a Partially Coherent Vortex-Beam Array in Atmospheric Turbulence
11.1 Beam-Array Overview
11.2 Intensity Distribution of a Radial Partially Coherent Vortex-Beam Array in Atmospheric Turbulence
11.2.1 Mathematical Model of a Radial Partially Coherent Vortex-Beam Array
11.2.2 Cross-Spectral Density Function on an Observation Plane
11.2.3 Expression of the Light Intensity on the Observation Plane
11.2.4 Effect of Light-Source Parameters on the Light-Intensity Characteristics in Non-Kolmogorov Turbulence
11.2.5 Influence Analysis of Radial-Array Parameters
11.2.6 Influence Analysis of Single Partially Coherent Vortex-Beam Parameters
11.3 Influence of Non-Kolmogorov Turbulence Parameters on Light-Intensity Characteristics
11.3.1 Impact Analysis of Non-Kolmogorov Turbulence Intensity
11.3.2 Non-Kolmogorov Turbulence Internal- and External-Scale Influence Analysis
11.4 Summary
References
12 Propagation Characteristics of Scalar Partially Coherent Vortex Beams in Atmospheric Turbulence
12.1 Basic Theory of Laguerre–Gaussian–Schell-Mode Vortex Beams
12.1.1 Laguerre–Gaussian–Schell Beams
12.1.2 Laguerre–Gaussian–Schell Vortex-Beam Model
12.1.3 Propagation Theory of a Laguerre–Gaussian–Schell Vortex Beam in Atmospheric Turbulence
12.2 Phase-Singularity Evolution of Far-Field Laguerre–Gaussian–Schell Vortex Beams
12.2.1 Relationship Between a Phase Singularity and the Topological Charge
12.2.2 Effect of the Transmission Distance on the Phase-Singularity Evolution
12.2.3 Effect of the Correlation Length on the Phase-Singularity Evolution
12.3 Intensity Distribution of a Laguerre–Gaussian–Schell Vortex Beam in Atmospheric Turbulence
12.3.1 Effect of the Atmospheric-Turbulence Intensity on the Light-Intensity Distribution
12.3.2 Influence of the Internal and External Atmospheric-Turbulence Scales on the Light-Intensity Distribution
12.4 Beam Propagation of a Laguerre–Gaussian–Schell Vortex Beam in Atmospheric Turbulence
12.4.1 Analysis of Variation of a Beam Spread with Light-Source Parameters
12.4.2 Analysis of the Beam Spread with Atmospheric-Turbulence Intensity
References
13 Propagation Characteristics of Partially Coherent Vector Vortex Beams in Atmospheric Turbulence
13.1 Polarization Theory of Partially Coherent Vector Beams
13.2 Cross-Spectral Density Matrix of Partially Coherent Vector Vortex Beams in Atmospheric Turbulence
13.2.1 Intensity and Degree of Polarization
13.2.2 Polarization-Direction Angle
13.3 Polarization-Distribution Degree of Partially Coherent Vector Vortex Beams in Atmospheric Turbulence
13.3.1 Influence of the Light-Source Parameters on the Degree of Polarization
13.3.2 Influence of Atmospheric Turbulence on the Polarization Degree
13.3.3 Variation of the Polarization Degree with the Transmission Distance
13.4 Polarization-Direction-Angle Distribution of Partially Coherent Vector Vortex Beams in Atmospheric Turbulence
13.4.1 Influence of Atmospheric Turbulence on the Polarization-Direction Angle
13.4.2 Influence of the Transmission Distance on the Polarization-Direction Angle
13.4.3 Polarization-Direction Angle Detection of the Topological Charge
13.4.4 Polarization-Direction-Angle Model of a Far-Field Diffracted Light Field
13.4.5 Results of Using the Polarization-Direction Angle to Detect the Topological Charge
13.4.6 Analysis of the Influence of the Light-Source Parameters on the Detection Effect
13.5 Summary
References
14 Vortex-Beam Information Exchange
14.1 Flexibility of an OAM Vortex-Beam Topological Charge
14.1.1 Conversion of a Single OAM Beam
14.1.2 Conversion of an OAM-Multiplexed Beam
14.2 Principle of OAM Vortex-Beam Channel Reconstruction
14.2.1 OAM-Beam Information Exchange
14.2.2 OAM-Beam Mode Switch
14.3 Demultiplexing an OAM-Multiplexed Vortex Beam
14.4 Experimental Research on the Channel Reconstruction of OAM Vortex Beams
14.4.1 Experimental Research on OAM Information Exchange
14.4.2 Experimental Research on Exchanging Two Information Beams Among Three OAM-Multiplexed Beams
14.4.3 Experimental Research on the Mode Conversion of One Beam in Multiple OAM-Multiplexed Beams
14.4.4 Experimental Research on Exchanging Two OAM Multiplexed Beams with the Same Mode and Different Information
14.4.5 Experimental Research on Deleting/Adding a Beam Pattern in Multiple OAM-Multiplexed Beams
References