General theory of functions and integration

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Presenting the various approaches to the study of integration, a well-known mathematics professor brings together in one volume "a blend of the particular and the general, of the concrete and the abstract." This volume is suitable for advanced undergraduates and graduate courses as well as for independent study. 1966 edition.

Author(s): Angus Ellis Taylor
Series: Dover Books on Mathematics Series
Publisher: Dover Publications
Year: 1985

Language: English
Pages: 452
City: New York
Tags: Theory of functions, Analysis, Measure theory, Integration, Functional Analysis

1. The Real Numbers. Point Sets and Sequences
1-0 Introduction 1
1-1 The real line 2
1-2 Notation and terminology concerning sets 7
1-3 Construction of a complete ordered field 12
1-4 Archimedean order. Countability of the rationals 16
1-5 Point sets. Upper and lower bounds 21
1-6 Real sequences 24
1-7 The extended real number system 29
1-8 Cauchy’s convergence condition 32
1-9 The theorem on nested intervals 34

2. Euclidean Space. Topology and Continuous Functions
2-0 Introduction 37
2-1 The space Rᵏ 38
2-2 Linear configurations in Rᵏ 43
2-3 The topology of Rᵏ 47
2-2-4 Nests, points of accumulation, and convergent sequences 56
2-5 Covering theorems 61
2-6 Compactness 65
2-7 Functions. Continuity 68
2-8 Connected sets 76
2-9 Relative topologies 83
2-10 Cantor’s ternary set 86

3. Abstract Spaces
3-0 Introduction 89
3-1 Topological spaces 90
3-2 Compactness and other properties 96
3-3 Postulates of separation 102
3-4 Postulated neighborhood systems 105
3-5 Compactification. Local compactness 107
3-6 Metric spaces 111
3-7 Compactness in metric spaces 121
3-8 Completeness and completion 124
3-9 Category 127
3-10 Zorn’s lemma 131
3-11 Cartesian product topologies 134
3-12 Vector spaces 140
3-13 Normed linear spaces 144
3-14 Hilbert spaces 153
3-15 Spaces of continuous functions 164

4. The Theory of Measure
4-0 Introduction 177
4-1 Algebraic operations in R* 178
4-2 Rings and σ-Rings 180
4-3 Additive set functions 185
4-4 Some properties of measures 188
4-5 Preliminary remarks about Lebesgue measure 189
4-6 Lebesgue outer measure in Rᵏ 191
4-7 The measure induced by an outer measure 196
4-8 Lebesgue measure in Rᵏ 203
4-9 A general method of constructing outer measures 215
4-10 Outer measures in R from monotone functions 218
4-11 The completion of a measure 224

5. The Lebesgue Integral
5-0 Introduction 226
5-1 Measurable functions 229
5-2 The integral of a bounded function 240
5-3 Preliminary convergence theorems 248
5-4 The general definition of an integral 252
5-5 Some basic convergence theorems 260
5-6 Convergence in measure 265
5-7 Convergence in mean 270
5-8 The Lᵖ spaces 274
5-9 Integration with respect to the completion of a measure 278

6. Integration by the Daniell Method
6-0 Introduction 281
6-1 Elementary integrals on a vector lattice of functions 282
6-2 Over-functions and under-functions 284
6-3 Summable functions 288
6-4 Sets of measure zero 292
6-5 Measurable functions and measurable sets 297
6-6 The N-norm 300
6-7 Connections with Chapter 5 303
6-8 Induction of Lebesgue measure in Rᵏ 310
6-9 Arbitrary elementary integrals on C°°(Rᵏ) 313
6-10 Regular Borel measures in Rᵏ 319
6-11 The class ℒᵖ 321

7. Iterated Integrals and Fubini’s Theorem
7—0 Introduction 324
7—1 The Fubini theorem for Euclidean spaces 326
7—2 The Fubini-Stone theorem 329
7~3 Products of functions of one variable 334
7—4 Iterated integrals and products of Euclidean spaces 336
7—5 Abstract theory of product-measures 339
7-6 The abstract Fubini theorem 345

8. The Theory of Signed Measures
8—0 Introduction 348
8—1 Signed measures 349
8—2 Absolute continuity 356
8—3 The Radon-Nikodym theorem 358
8—4 Continuous linear functionals on Lᵖ(μ) 361
8—5 The Lebesgue decomposition of a signed measure 364
8-6 Alternative approach via elementary integrals 366
8-7 The decomposition of linear functionals 371

9. Functions of One Real Variable
9-0 Introduction 379
9-1 Monotone functions 379
9-2 Vector-valued functions of bounded variation 382
9-3 Rectifiable curves 388
9-4 Real-valued functions of bounded variation 390
9-5 Stieltjes integrals 392
9-6 Convergence theorems for functions of bounded variation 398
9-7 Differentiation of monotone functions 402
9-8 Absolutely continuous functions 410

BIBLIOGRAPHY 423

LIST OF SPECIAL SYMBOLS 429

INDEX 431