General, Organic, and Biological Chemistry

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Stephen Stoker
Edition: 7
Publisher: Cengage
Year: 2016

Language: English
Commentary: decrypted from 402FAB1EE79FF58F36FEB35CF2BAA5C9 source file
Pages: 1242

Cover
FES-2
FES-3
FES-4
Title
Statement
Copyright
Brief Contents
Contents
Preface
Ch 1: Basic Concepts About Matter
Ch 1: Chapter Outline
Ch 1: Introduction
1-1: Chemistry: The Study of Matter
1-2: Physical States of Matter
1-3: Properties of Matter
1-4: Changes in Matter
1-5: Pure Substances and Mixtures
1-6: Elements and Compounds
1-7: Discovery and Abundance of the Elements
1-8: Names and Chemical Symbols of the Elements
1-9: Atoms and Molecules
1-10: Chemical Formulas
Ch 1: Concepts to Remember
Ch 1: Exercises and Problems
Ch 2: Measurements in Chemistry
Ch 2: Chapter Outline
Ch 2: Introduction
2-1: Measurement Systems
2-2: Metric System Units
2-3: Exact and Inexact Numbers
2-4: Uncertainty in Measurement and Significant Figures
2-5: Significant Figures and Mathematical Operations
2-6: Scientific Notation
2-7: Conversion Factors
2-8: Dimensional Analysis
2-9: Density
2-10: Temperature Scales
Ch 2: Concepts to Remember
Ch 2: Exercises and Problems
Ch 3: Atomic Structure and the Periodic Table
Ch 2: Chapter Outline
Ch 2: Introduction
3-1: Internal Structure of an Atom
3-2: Atomic Number and Mass Number
3-3: Isotopes and Atomic Masses
3-4: The Periodic Law and the Periodic Table
3-5: Metals and Nonmetals
3-6: Electron Arrangements Within Atoms
3-7: Electron Configurations and Orbital Diagrams
3-8: The Electronic Basis for the Periodic Law and the Periodic Table
3-9: Classification of the Elements
Ch 3: Concepts to Remember
Ch 3: Exercises and Problems
Ch 4: Chemical Bonding: The Ionic Bond Model
Ch 4: Chapter Outline
Ch 4: Introduction
4-1: Chemical Bonds
4-2: Valence Electrons and Lewis Symbols
4-3: The Octet Rule
4-4: The Ionic Bond Model
4-5: The Sign and Magnitude of Ionic Charge
4-6: Lewis Structures for Ionic Compounds
4-7: Chemical Formulas for Ionic Compounds
4-8: The Structure of Ionic Compounds
4-9: Recognizing and Naming Binary Ionic Compounds
4-10: Polyatomic Ions
4-11: Chemical Formulas and Names for Ionic Compounds Containing Polyatomic Ions
Ch 4: Concepts to Remember
Ch 4: Exercises and Problems
Ch 5: Chemical Bonding: The Covalent Bond Model
Ch 5: Chapter Outline
Ch 5: Introduction
5-1: The Covalent Bond Model
5-2: Lewis Structures for Molecular Compounds
5-3: Single, Double, and Triple Covalent Bonds
5-4: Valence Electrons and Number of Covalent Bonds Formed
5-5: Coordinate Covalent Bonds
5-6: Systematic Procedures for Drawing Lewis Structures
5-7: Bonding in Compounds with Polyatomic Ions Present
5-8: Molecular Geometry
5-9: Electronegativity
5-10: Bond Polarity
5-11: Molecular Polarity
5-12: Recognizing and Naming Binary Molecular Compounds
Ch 5: Concepts to Remember
Ch 5: Exercises and Problems
Ch 6: Chemical Calculations: Formula Masses, Moles, and Chemical Equations
Ch 6: Chapter Outline
Ch 6: Introduction
6-1: Formula Masses
6-2: The Mole: A Counting Unit for Chemists
6-3: The Mass of a Mole
6-4: Chemical Formulas and the Mole Concept
6-5: The Mole and Chemical Calculations
6-6: Writing and Balancing Chemical Equations
6-7: Chemical Equations and the Mole Concept
6-8: Chemical Calculations Using Chemical Equations
6-9: Yields: Theoretical, Actual, and Percent
Ch 6: Concepts to Remember
Ch 6: Exercises and Problems
Ch 7: Gases, Liquids, and Solids
Ch 7: Chapter Outline
Ch 7: Introduction
7-1: The Kinetic Molecular Theory of Matter
7-2: Kinetic Molecular Theory and Physical States
7-3: Gas Law Variables
7-4: Boyle’s Law: A Pressure–Volume Relationship
7-5: Charles’s Law: A Temperature–Volume Relationship
7-6: The Combined Gas Law
7-7: The Ideal Gas Law
7-8: Dalton’s Law of Partial Pressures
7-9: Changes of State
7-10: Evaporation of Liquids
7-11: Vapor Pressure of Liquids
7-12: Boiling and Boiling Point
7-13: Intermolecular Forces in Liquids
Ch 7: Concepts to Remember
Ch 7: Exercises and Problems
Ch 8: Solutions
Ch 8: Chapter Outline
Ch 8: Introduction
8-1: Characteristics of Solutions
8-2: Solubility
8-3: Solution Formation
8-4: Solubility Rules
8-5: Percent Concentration Units
8-6: Molarity Concentration Unit
8-7: Dilution
8-8: Colloidal Dispersions and Suspensions
8-9: Colligative Properties of Solutions
8-10: Osmosis and Osmotic Pressure
Ch 8: Concepts to Remember
Ch 8: Exercises and Problems
Ch 9: Chemical Reactions
Ch 9: Chapter Outline
Ch 9: Introduction
9-1: Types of Chemical Reactions
9-2: Redox and Nonredox Chemical Reactions
9-3: Terminology Associated with Redox Processes
9-4: Collision Theory and Chemical Reactions
9-5: Exothermic and Endothermic Chemical Reactions
9-6: Factors That Influence Chemical Reaction Rates
9-7: Chemical Equilibrium
9-8: Equilibrium Constants
9-9: Altering Equilibrium Conditions: Le Châtelier’s Principle
Ch 9: Concepts to Remember
Ch 9: Exercises and Problems
Ch 10: Acids, Bases, and Salts
Ch 10: Chapter Outline
Ch 10: Introduction
10-1: Arrhenius Acid–Base Theory
10-2: Brønsted–Lowry Acid–Base Theory
10-3: Mono-, Di-, and Triprotic Acids
10-4: Strengths of Acids and Bases
10-5: Ionization Constants for Acids and Bases
10-6: Salts
10-7: Acid–Base Neutralization Chemical Reactions
10-8: Self-Ionization of Water
10-9: The pH Concept
10-10: The pKa Method for Expressing Acid Strength
10-11: The pH of Aqueous Salt Solutions
10-12: Buffers
10-13: The Henderson–Hasselbalch Equation
10-14: Electrolytes
10-15: Equivalents and Milliequivalents of Electrolytes
10-16: Acid–Base Titrations
Ch 10: Concepts to Remember
Ch 10: Exercises and Problems
Ch 11: Nuclear Chemistry
Ch 11: Chapter Outline
Ch 11: Introduction
11-1: Stable and Unstable Nuclides
11-2: The Nature of Radioactive Emissions
11-3: Equations for Radioactive Decay
11-4: Rate of Radioactive Decay
11-5: Transmutation and Bombardment Reactions
11-6: Radioactive Decay Series
11-7: Detection of Radiation
11-8: Chemical Effects of Radiation
11-9: Biochemical Effects of Radiation
11-10: Sources of Radiation Exposure
11-11: Nuclear Medicine
11-12: Nuclear Fission and Nuclear Fusion
11-13: Nuclear and Chemical Reactions Compared
Ch 11: Concepts to Remember
Ch 11: Exercises and Problems
Ch 12: Saturated Hydrocarbons
Ch 12: Chapter Outline
Ch 12: Introduction
12-1: Organic and Inorganic Compounds
12-2: Bonding Characteristics of the Carbon Atom
12-3: Hydrocarbons and Hydrocarbon Derivatives
12-4: Alkanes: Acyclic Saturated Hydrocarbons
12-5: Structural Formulas
12-6: Alkane Isomerism
12-7: Conformations of Alkanes
12-8: IUPAC Nomenclature for Alkanes
12-9: Line-Angle Structural Formulas for Alkanes
12-10: Classification of Carbon Atoms
12-11: Branched-Chain Alkyl Groups
12-12: Cycloalkanes
12-13: IUPAC Nomenclature for Cycloalkanes
12-14: Isomerism in Cycloalkanes
12-15: Sources of Alkanes and Cycloalkanes
12-16: Physical Properties of Alkanes and Cycloalkanes
12-17: Chemical Properties of Alkanes and Cycloalkanes
12-18: Halogenated Alkanes and Cycloalkanes
Ch 12: Concepts to Remember
Ch 12: Exercises and Problems
Ch 13: Unsaturated Hydrocarbons
Ch 13: Chapter Outline
Ch 13: Introduction
13-1: Unsaturated Hydrocarbons
13-2: Characteristics of Alkenes and Cycloalkenes
13-3: Nomenclature for Alkenes and Cycloalkenes
13-4: Line-Angle Structural Formulas for Alkenes
13-5: Constitutional Isomerism in Alkenes
13-6: Cis–Trans Isomerism in Alkenes
13-7: Naturally Occurring Alkenes
13-8: Physical Properties of Alkenes and Cycloalkenes
13-9: Preparation of Alkenes
13-10: Chemical Reactions of Alkenes
13-11: Polymerization of Alkenes: Addition Polymers
13-12: Alkynes
13-13: Aromatic Hydrocarbons
13-14: Nomenclature for Aromatic Hydrocarbons
13-15: Properties of and Sources for Aromatic Hydrocarbons
13-16: Fused-Ring Aromatic Hydrocarbons
Ch 13: Concepts to Remember
Ch 13: Exercises and Problems
Ch 14: Alcohols, Phenols, and Ethers
Ch 14: Chapter Outline
Ch 14: Introduction
14-1: Bonding Characteristics of Oxygen Atoms in Organic Compounds
14-2: Structural Characteristics of Alcohols
14-3: Nomenclature for Alcohols
14-4: Isomerism for Alcohols
14-5: Important Commonly Encountered Alcohols
14-6: Physical Properties of Alcohols
14-7: Preparation of Alcohols
14-8: Classification of Alcohols
14-9: Chemical Reactions of Alcohols
14-10: Structural Characteristics of Phenols
14-11: Nomenclature for Phenols
14-12: Physical and Chemical Properties of Phenols
14-13: Occurrence of and Uses for Phenols
14-14: Structural Characteristics of Ethers
14-15: Nomenclature for Ethers
14-16: Occurrence of and Uses for Ethers
14-17: Isomerism for Ethers
14-18: Physical and Chemical Properties of Ethers
14-19: Cyclic Ethers
14-20: Thiols: Sulfur Analogs of Alcohols
14-21: Thioethers: Sulfur Analogs of Ethers
Ch 14: Concepts to Remember
Ch 14: Exercises and Problems
Ch 15: Aldehydes and Ketones
Ch 15: Chapter Outline
Ch 15: Introduction
15-1: The Carbonyl Group
15-2: Compounds Containing a Carbonyl Group
15-3: The Aldehyde and Ketone Functional Groups
15-4: Nomenclature for Aldehydes
15-5: Nomenclature for Ketones
15-6: Isomerism for Aldehydes and Ketones
15-7: Selected Common Aldehydes and Ketones
15-8: Physical Properties of Aldehydes and Ketones
15-9: Preparation of Aldehydes and Ketones
15-10: Oxidation and Reduction of Aldehydes and Ketones
15-11: Reaction of Aldehydes and Ketones with Alcohols
15-12: Sulfur-Containing Carbonyl Groups
Ch 15: Concepts to Remember
Ch 15: Exercises and Problems
Ch 16: Carboxylic Acids, Esters, and Other Acid Derivatives
Ch 16: Chapter Outline
Ch 16: Introduction
16-1: Structure of Carboxylic Acids and Their Derivatives
16-2: IUPAC Nomenclature for Carboxylic Acids
16-3: Common Names for Carboxylic Acids
16-4: Polyfunctional Carboxylic Acids
16-5: Physical Properties of Carboxylic Acids
16-6: Preparation of Carboxylic Acids
16-7: Acidity of Carboxylic Acids
16-8: Carboxylic Acid Salts
16-9: Carboxylic Acid Decarboxylation Reaction
16-10: Structure of Esters
16-11: Preparation of Esters
16-12: Nomenclature for Esters
16-13: Selected Common Esters
16-14: Isomerism for Carboxylic Acids and Esters
16-15: Physical Properties of Esters
16-16: Chemical Reactions of Esters
16-17: Sulfur Analogs of Esters
16-18: Polyesters
16-19: Acid Chlorides and Acid Anhydrides
16-20: Esters and Anhydrides of Inorganic Acids
Ch 16: Concepts to Remember
Ch 16: Exercises and Problems
Ch 17: Amines and Amides
Ch 17: Chapter Outline
Ch 17: Introduction
17-1: Bonding Characteristics of Nitrogen Atoms in Organic Compounds
17-2: Structure and Classification of Amines
17-3: Nomenclature for Amines
17-4: Isomerism for Amines
17-5: Physical Properties of Amines
17-6: Basicity of Amines
17-7: Reaction of Amines with Acids
17-8: Alkylation of Ammonia and Amines
17-9: Heterocyclic Amines
17-10: Selected Biochemically Important Amines
17-11: Alkaloids
17-12: Structure and Classification of Amides
17-13: Nomenclature for Amides
17-14: Selected Amides and Their Uses
17-15: Basicity of Amides
17-16: Physical Properties of Amides
17-17: Preparation of Amides
17-18: Hydrolysis of Amides
17-19: Polyamides and Polyurethanes
Ch 17: Concepts to Remember
Ch 17: Exercises and Problems
Ch 18: Carbohydrates
Ch 18: Chapter Outline
Ch 18: Introduction
18-1: Biochemistry—An Overview
18-2: Occurrence and Functions of Carbohydrates
18-3: Classification of Carbohydrates
18-4: Chirality: Handedness in Molecules
18-5: Stereoisomerism: Enantiomers and Diastereomers
18-6: Designating Handedness Using Fischer Projection Formulas
18-7: Properties of Enantiomers
18-8: Classification of Monosaccharides
18-9: Biochemically Important Monosaccharides
18-10: Cyclic Forms of Monosaccharides
18-11: Haworth Projection Formulas
18-12: Reactions of Monosaccharides
18-13: Disaccharides
18-14: Oligosaccharides
18-15: General Characteristics of Polysaccharides
18-16: Storage Polysaccharides
18-17: Structural Polysaccharides
18-18: Acidic Polysaccharides
18-19: Dietary Considerations and Carbohydrates
18-20: Glycolipids and Glycoproteins: Cell Recognition
Ch 18: Concepts to Remember
Ch 18: Exercises and Problems
Ch 19: Lipids
Ch 19: Chapter Outline
Ch 19: Introduction
19-1: Structure and Classification of Lipids
19-2: Types of Fatty Acids
19-3: Physical Properties of Fatty Acids
19-4: Energy-Storage Lipids: Triacylglycerols
19-5: Dietary Considerations and Triacylglycerols
19-6: Chemical Reactions of Triacylglycerols
19-7: Membrane Lipids: Phospholipids
19-8: Membrane Lipids: Sphingoglycolipids
19-9: Membrane Lipids: Cholesterol
19-10: Cell Membranes
19-11: Emulsification Lipids: Bile Acids
19-12: Messenger Lipids: Steroid Hormones
19-13: Messenger Lipids: Eicosanoids
19-14: Protective-Coating Lipids: Biological Waxes
19-15: Saponifiable and Nonsaponifiable Lipids
Ch 19: Concepts to Remember
Ch 19: Exercises and Problems
Ch 20: Proteins
Ch 20: Chapter Outline
Ch 20: Introduction
20-1: Characteristics of Proteins
20-2: Amino Acids: The Building Blocks for Proteins
20-3: Essential Amino Acids
20-4: Chirality and Amino Acids
20-5: Acid–Base Properties of Amino Acids
20-6: Cysteine: A Chemically Unique Amino Acid
20-7: Peptides
20-8: Biochemically Important Small Peptides
20-9: General Structural Characteristics of Proteins
20-10: Primary Structure of Proteins
20-11: Secondary Structure of Proteins
20-12: Tertiary Structure of Proteins
20-13: Quaternary Structure of Proteins
20-14: Protein Hydrolysis
20-15: Protein Denaturation
20-16: Protein Classification Based on Shape
20-17: Protein Classification Based on Function
20-18: Glycoproteins
20-19: Lipoproteins
Ch 20: Concepts to Remember
Ch 20: Exercises and Problems
Ch 21: Enzymes and Vitamins
Ch 21: Chapter Outline
Ch 21: Introduction
21-1: General Characteristics of Enzymes
21-2: Enzyme Structure
21-3: Nomenclature and Classification of Enzymes
21-4: Models of Enzyme Action
21-5: Enzyme Specificity
21-6: Factors That Affect Enzyme Activity
21-7: Extremozymes
21-8: Enzyme Inhibition
21-9: Regulation of Enzyme Activity
21-10: Prescription Drugs That Inhibit Enzyme Activity
21-11: Medical Uses of Enzymes
21-12: General Characteristics of Vitamins
21-13: Water-Soluble Vitamins: Vitamin C
21-14: Water-Soluble Vitamins: The B Vitamins
21-15: Fat-Soluble Vitamins
Ch 21: Concepts to Remember
Ch 21: Exercises and Problems
Ch 22: Nucleic Acids
Ch 22: Chapter Outline
Ch 22: Introduction
22-1: Types of Nucleic Acids
22-2: Nucleotides: Structural Building Blocks for Nucleic Acids
22-3: Nucleotide Formation
22-4: Primary Nucleic Acid Structure
22-5: The DNA Double Helix
22-6: Replication of DNA Molecules
22-7: Overview of Protein Synthesis
22-8: Ribonucleic Acids
22-9: Transcription: RNA Synthesis
22-10: The Genetic Code
22-11: Anticodons and tRNA Molecules
22-12: Translation: Protein Synthesis
22-13: Mutations
22-14: Nucleic Acids and Viruses
22-15: Recombinant DNA and Genetic Engineering
22-16: The Polymerase Chain Reaction
Ch 22: Concepts to Remember
Ch 22: Exercises and Problems
Ch 23: Biochemical Energy Production
Ch 23: Chapter Outline
Ch 23: Introduction
23-1: Metabolism
23-2: Metabolism and Cell Structure
23-3: Important Nucleotide-Containing Compounds in Metabolic Pathways
23-4: Important Carboxylate Ions in Metabolic Pathways
23-5: High-Energy Phosphate Compounds
23-6: An Overview of Biochemical Energy Production
23-7: The Citric Acid Cycle
23-8: The Electron Transport Chain
23-9: Oxidative Phosphorylation
23-10: ATP Production for the Common Metabolic Pathway
23-11: Non-ETC Oxygen-Consuming Reactions
23-12: B Vitamins and the Common Metabolic Pathway
Ch 23: Concepts to Remember
Ch 23: Exercises and Problems
Ch 24: Carbohydrate Metabolism
Ch 24: Chapter Outline
Ch 24: Introduction
24-1: Digestion and Absorption of Carbohydrates
24-2: Glycolysis
24-3: Fates of Pyruvate
24-4: ATP Production from the Complete Oxidation of Glucose
24-5: Glycogen Synthesis and Degradation
24-6: Gluconeogenesis
24-7: Terminology for Glucose Metabolic Pathways
24-8: The Pentose Phosphate Pathway
24-9: Hormonal Control of Carbohydrate Metabolism
24-10: B Vitamins and Carbohydrate Metabolism
Ch 24: Concepts to Remember
Ch 24: Exercises and Problems
Ch 25: Lipid Metabolism
Ch 25: Chapter Outline
Ch 25: Introduction
25-1: Digestion and Absorption of Lipids
25-2: Triacylglycerol Storage and Mobilization
25-3: Glycerol Metabolism
25-4: Oxidation of Fatty Acids
25-5: ATP Production from Fatty Acid Oxidation
25-6: Ketone Bodies and Ketogenesis
25-7: Biosynthesis of Fatty Acids: Lipogenesis
25-8: Relationships Between Lipogenesis and Citric Acid Cycle Intermediates
25-9: Fate of Fatty-Acid-Generated Acetyl CoA
25-10: Relationships Between Lipid and Carbohydrate Metabolism
25-11: B Vitamins and Lipid Metabolism
Ch 25: Concepts to Remember
Ch 25: Exercises and Problems
Ch 26: Protein Metabolism
Ch 26: Chapter Outline
Ch 26: Introduction
26-1: Protein Digestion and Absorption
26-2: Amino Acid Utilization
26-3: Transamination and Oxidative Deamination
26-4: The Urea Cycle
26-5: Amino Acid Carbon Skeletons
26-6: Amino Acid Biosynthesis
26-7: Hemoglobin Catabolism
26-8: Proteins and the Element Sulfur
26-9: Interrelationships Among Metabolic Pathways
26-10: B Vitamins and Protein Metabolism
Ch 26: Concepts to Remember
Ch 26: Exercises and Problems
Answers to Selected Exercises
Index/Glossary
BES-6
BES-7