Frontiers in Robotics and Electromechanics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book introduces intellectual control systems and electromechanics of heterogeneous robots. The book uncovers fundamental principles of robot control and recent developments in software and hardware of robots. The book presents solutions and discusses problems of single robotic devices as well as heterogeneous robotic teams while performing technological tasks that require informational, physical or energetic interaction with human users, environment and other robots. The book considers model–algorithmic and software–hardware control of ground, water and underwater robots, unmanned aerial vehicles, as well as their embedded and attached sub-systems, including manipulators, end-effectors, sensors, actuators, etc. The book will be useful for researchers of interdisciplinary issues related to robotics, electromechanics and artificial intelligence. The book is recommended for graduate students with a major/minor in the areas of robotics and mechatronics, management in technical systems, Internet of Things, artificial intelligence, electrical engineering, mechanical engineering and computer science.

Author(s): Andrey Ronzhin, Viacheslav Pshikhopov
Series: Smart Innovation, Systems and Technologies, 329
Publisher: Springer
Year: 2023

Language: English
Pages: 443
City: Singapore

Preface
Contents
Editors and Contributors
Part I Modeling and Control of Manipulators, Multi-link Robots
1 Simulation of Foot Movement During Walking Based on the Study of Different Step Parameters
1.1 Introduction
1.2 Kinematic Equations of the Key Points of the Foot
1.3 Construction of the Trajectory of the Key Points of the Foot
1.4 Smoothing and Polynomialization of the Trajectory
1.5 Comparison of the Experimental Trajectory with the Mathematically Processed Trajectory
1.6 Solving the Inverse Kinematics Problem
1.7 Lower Limb Motion Modeling with MATLAB
1.8 Conclusion
References
2 Mathematical Modeling of the Biomechanical Rehabilitation System of Foot Exoskeleton in Frontal and Sagittal Planes
2.1 Introduction
2.2 The Structural Diagram of the Ankle Rehabilitation System
2.2.1 The Kinematic Diagram
2.3 Angle of Rotation Ranges of the Foot
2.4 Mathematical Model of the Biomechanical System
2.4.1 Mathematical Model of the System in the Sagittal Plane
2.5 Experimental Results of Foot Motion in the Sagittal Plane
2.5.1 Investigation of the Mathematical Model in the Frontal Plane
2.5.2 Experimental Results of Foot Movement in the Frontal Plane
2.6 Conclusion
References
3 Simulation of Controlled Motion of the Actuator of Robotic Systems in the Presence of Coupling Forces
3.1 Mathematical Model of Coupling Forces
3.2 Calculation Scheme of the Interaction of the Device with the Environment and Nodes
3.3 Mathematical Expressions for Modeling
3.4 Block Diagram of the Device Control System
3.5 Description of the Mathematical Model of the Automatic Control System
3.6 Conclusions
References
4 Digital Control by Robot Manipulator with Improved Rigidity
4.1 Introduction
4.2 Operational Unit Positioning Control System Statics
4.3 Operational Unit Positioning Control System Dynamics
4.4 Digital Control by Manipulator Positioning
4.5 Conclusion
References
5 Performance Evaluation of Multigrid Brute-Force Solutions of Inverse Kinematics Problem for the Robotis OP2 Humanoid Hand
5.1 Introduction
5.2 System Setup
5.3 Algorithms Description
5.3.1 Brute-Force Algorithm
5.3.2 Matrix-Based Brute-Force Algorithm
5.4 Testing
5.5 Experimental Results Analysis
5.6 Discussion
5.7 Conclusions
References
6 Neural Network Approach for Solving Inverse Kinematics Problem of Modular Reconfigurable Systems
6.1 Introduction
6.2 Related Works
6.3 Material and Methods
6.3.1 Algorithm of ANNs Learning for Solving IK Problem of Modular RSs
6.3.2 Dataset Generation
6.4 Experiments of Modeling an Autonomous Robotic System
6.5 Conclusion
References
7 Algorithm of Trajectories Synthesis for Modular Wheeled Inspection Robot
7.1 Introduction
7.2 Mathematical Model
7.3 Parametric Analysis of Robot Kinematics
7.4 Features of the Robot Dynamics
7.5 Conclusion
References
Part II Interaction and Control of Robot Group
8 Study of Algorithms for Coordinating a Group of Autonomous Robots in a Formation
8.1 Introduction
8.2 Mathematical Model of the UAV and the Formulation of the Problem
8.3 Formation Algorithms
8.4 Results of the Study of Formation Algorithms
8.5 Conclusion
References
9 Intelligent System for Countering Groups of Robots Based on Reinforcement Learning Technologies
9.1 Introduction
9.2 Problem Description
9.3 Algorithms
9.4 Neural Network Architecture
9.5 Preliminary Processing
9.6 Reward Function
9.7 Training
9.8 Conclusion
References
10 LIRS-MazeGen: An Easy-to-Use Blender Extension for Modeling Maze-Like Environments for Gazebo Simulator
10.1 Introduction
10.2 Related Work
10.3 Maze Generation Module
10.3.1 Graphical User Interface
10.3.2 Experimental Considerations
10.3.3 3D-Maze Modeling
10.4 Maze Environment Validation
10.5 Conclusions
References
11 Modeling of Joint Motion Planning of Group of Mobile Robots and Unmanned Aerial Vehicle
11.1 Introduction
11.2 Problem Statement
11.3 Review of Methods for Planning the Movement of Mobile Robots in a Group
11.4 Applying Tangential Avoidance to Calculate the Paths of Mobile Robots in a Group
11.5 Experiments
11.6 Formation and Landing
11.7 Determining How to Build a Communication Field to Transmit Data from a UAV to a Group of Ground Robots
11.8 Conclusion
References
12 Simulation of Controllable Motion of a Flying Robot Under the Action of Aerodynamic Force of a Bioinspired Flapping Wing
12.1 Introduction
12.2 Flapping Wing Kinematics
12.3 Model of Force in the Interaction of a Wing with Air
12.4 Aircraft Motion Control
12.5 Conclusion
References
13 Approaches to Optimizing Individual Maneuvers of Unmanned Aerial Vehicle
13.1 Introduction
13.2 Mathematical Model of the Aircraft and Problem Formulation
13.3 Modification of Direct Control Method
13.4 General Methodological Foundations of UAV Formation Control
13.5 Results of the Study
13.6 Conclusion
References
14 Neural Network Technologies in the Tasks of Estimating and Forecasting the Resource of Power Supply Systems in Robotic Complexes
14.1 Introduction and Problem Statement
14.2 Related Works
14.3 Investigation of the Influence of Temperature and Electric Field Strength on the Breakdown of Polymer Materials of the Thermofluctuation Theory
14.3.1 Problem Statement and Its Solution
14.3.2 Calculation of the Time to Breakdown Based on the Thermofluctuation Theory
14.3.3 Experimental Investigation
14.4 Investigation of Magnetic Induction in an Inhomogeneous Dielectric
14.4.1 Case of Homogeneous Insulation
14.4.2 Case of Inhomogeneous Insulation
14.5 Conclusion
References
15 Instantaneous Common-Mode Voltage Reduction of Three-Phase Multilevel Voltage Source Inverter Under Quarter-Wave-Symmetric Space Vector PWM with Full Set of Vectors
15.1 Introduction
15.2 Zero-Common-Mode-Voltage Space Vectors Applying
15.3 Common-Mode Voltage Reduction Under Applying of Full Set of Space Vectors
15.4 Computer Simulation
15.5 Conclusion
References
16 System of Decentralized Control of a Group of Mobile Robotic Means Interacting with Charging Stations
16.1 Introduction
16.2 Synthesis of a Method for Decentralized Control of the Process of Functioning of a Generalized Doubly Connected Technical System
16.2.1 Problem Statement
16.2.2 Control System for a Distributed Generalized Network, Including Mobile Robotic Vehicles and Docking Stations
16.2.3 Method of Decentralized Interaction of Mobile and Stationary Objects of the DGN
16.3 Decentralized Control Method for a DGN Containing a Group of UAVs and a Station for Recharging Them
16.4 Simplified Model of UAV Energy Consumption
16.5 Required Energy Characteristics of a Recharging Station Based on a Wind Power Plant
16.6 Simulation
16.7 Conclusion
References
17 Method for Optimizing the Trajectory of a Group of Mobile Robots in a Field of Repeller Sources Using the Method of Characteristic Probabilistic Functions
17.1 Introduction
17.2 The Problem Statement
17.3 Methods for Constructing a Program Trajectory of a Ground-Based Robotic Platform Under the Influence of Disturbance Sources
17.3.1 Method for Optimizing Local Sections of the Trajectory Based on the Characteristic Probabilistic Function
17.3.2 Method for Reducing Oscillations and Trajectory Length When Planning Motion in a Region with Sources
17.4 Correction of Individual Trajectories of Ground-Based Robotic Platforms Forming a Group Under the Influence of Disturbance Sources
17.5 Additional Correction of Trajectories Taking into Account Obstacles
17.6 Simulation Results
17.7 Conclusion
References
Part III Heterogeneous Robots in Monitoring and Service Tasks
18 Control of Robotic Mobile Platform for Monitoring Water Bodies
18.1 Introduction
18.2 Robotic Mobile Platform Scheme
18.3 Mathematical Model of RMP
18.4 RMP Control System
18.5 RMP Motion Planning Algorithm
18.6 Synthesis of the Optimal Regulator
18.7 Results of Simulation
18.8 Conclusions
References
19 Control System of Small-Unmanned Aerial Vehicle for Monitoring Sea Vessels on Coastal Territory of Ecuador
19.1 Introduction
19.2 Structure of the System for Monitoring Sea Vessels in Coastal Areas
19.3 SUAV Motion Control
19.4 SUAV Control Algorithms
19.5 Planning of SUAV Flight Trajectory
19.6 Vision System
19.7 Conclusions
References
20 Development of an Algorithm for Coverage Path Planning for Survey of the Territory Using UAVs
20.1 Introduction
20.2 Requirements for the Algorithm for Constructing a Covering Trajectory
20.3 Development of an Algorithm for Constructing a Covering Path for a Polygon
20.4 Result of Operation of the Algorithm
20.5 Conclusion
References
21 Computer Vision System of Robot Control for Monitoring Objects in Radioactive Areas
21.1 Introduction
21.2 Scheme and Principle of the Mobile Robot Operation
21.3 Mathematical Model and Principle of the Control System Operation
21.4 Formation of the Data About a Studied Object
21.5 Mathematical Modeling of the Control System in the Object Scanning Mode
21.6 Conclusion
References
22 Method for Searching Deployment Zones of Ground Seismic Sensors by a Heterogeneous Group of UAVs in an Environment with a Complex Topography
22.1 Introduction
22.2 Related Works
22.3 Method of Searching Deployment Zones for Ground Seismic Sensors by Means of a Heterogeneous Group of UAVs
22.4 Results
22.5 Conclusion
References
23 Method of Autonomous Survey of Power Lines Using a Multi-rotor UAV
23.1 Introduction
23.2 Description of the Developed Method of Autonomous Survey of PTL
23.3 Description of the Developed Algorithms for UAV Movement According to Given Patterns of Trajectories
23.4 Experimental Results
23.5 Conclusion
References
24 Walking Robots for Agricultural Monitoring
24.1 Introduction
24.2 Application Scenario
24.3 Types of Walking Robots and Their Gaits
24.4 Work Requirements
24.5 Industrial Analogues
24.6 Conclusion
References
25 Computational Approach to Optimal Control in Applied Robotics
25.1 Introduction
25.2 Problem Statement of the Synthesized Optimal Control
25.3 Methods Overview
25.4 Computational Example
25.5 Conclusions
References
26 Highly Maneuverable Small-Sized Wheeled Mobile Robotic Construction Platform
26.1 Introduction
26.2 Proposed Structure and Description of the MRCP
26.3 Mathematical Model of MRCP Movement with Two Independent Driving Wheels
26.4 MRCP Movement Control
26.5 Planning of MRCP Trajectory Movement
26.6 Conclusions
References
27 Control System for Robotic Towing Platform for Moving Aircraft
27.1 Introduction
27.2 Control Methods for Wheeled Robots
27.3 Design of a Robotic Aircraft Tug
27.4 External Environment Perception System
27.5 Description of the Positioning Control System Using an Optical Sensor Based on an Optronic Matrix
27.6 Description of the Work Area
27.7 Construction of a Piecewise Linear Trajectory
27.8 Determination of Positioning Relative to the Line with the Help of an Optronic Matrix
27.9 Synthesis of Multi-channel Controller for Robot Motion
27.10 Example of Simulation of RMB Motion Along a Contrasting Line
27.10.1 Simulation Results
27.11 Conclusion
References
28 Simple Task Allocation Algorithm in a Collaborative Robotic System
28.1 Introduction
28.2 Problem Statement and Algorithmic Solution
28.3 MATLAB Simulation
28.4 Conclusions and Future Work
References