Flow boiling and condensation in microscale channels

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book covers aspects of multiphase flow and heat transfer during phase change processes, focusing on boiling and condensation in microscale channels. The authors present up-to-date predictive methods for flow pattern, void fraction, pressure drop, heat transfer coefficient and critical heat flux, pointing out the range of operational conditions that each method is valid. The first four chapters are dedicated on the motivation to study multiphase flow and heat transfer during phase change process, and the three last chapters are focused on the analysis of heat transfer process during boiling and condensation. During the description of the models and predictive methods, the trends are discussed and compared with experimental findings.

Author(s): Fabio Toshio Kanizawa, Gherhardt Ribatski
Series: Mechanical Engineering Series
Publisher: Springer
Year: 2021

Language: English
Pages: 293
City: Cham

Preface
Contents
Nomenclature
Chapter 1: Introduction
1.1 Problems
References
Chapter 2: Fundamentals
2.1 Basic Definitions
2.2 Flow Patterns
2.2.1 Flow Patterns During Vertical Adiabatic Flow
2.2.2 Flow Patterns for Horizontal Adiabatic Flows
2.3 Void Fraction
2.3.1 Local Void Fraction
2.3.2 Line Averaged Void Fraction
2.3.3 Area Averaged Void Fraction
2.3.4 Volume Averaged Void Fraction
2.3.5 Void Fraction Predictive Methods
2.3.5.1 Slip Ratio Method
2.3.5.2 Drift Flux Model - Zuber and Findlay Method
2.3.5.3 Minimum Entropy Generation - Zivi´s Method
2.3.5.4 Minimum Kinetic Energy Method - Kanizawa and Ribatski Method
2.4 Flow Boiling Fundamentals
2.5 In-Tube Condensation Fundamentals
2.6 Transition from Macro to Microscale Conditions
2.7 Solved Example
2.8 Problems
References
Chapter 3: Flow Patterns
3.1 Flow Pattern Identification
3.2 Flow Pattern Transition Criteria for Adiabatic Flows
3.2.1 Graphical Methods
3.2.2 Taitel and Dukler (1976)
3.2.3 Taitel, Barnea, and Dukler (1980)
3.2.4 Barnea, Shoham, and Taitel (1982a)
3.3 Predictive Methods for Convective Boiling
3.3.1 Wojtan, Ursenbacher, and Thome (2005)
3.3.2 Revellin and Thome (2007)
3.3.3 Ong and Thome (2011)
3.4 Predictive Method for Convective Condensation
3.4.1 El Hajal, Thome, and Cavallini (2003)
3.4.2 Nema, Garimella, and Fronk (2014)
3.5 Solved Examples
3.6 Problems
References
Chapter 4: Pressure Drop
4.1 Predictive Methods for Frictional Pressure Drop Parcel
4.1.1 Homogeneous Model
4.1.2 Lockhart and Martinelli (1949)
4.1.3 Chisholm (1967)
4.1.4 Müller-Steinhagen and Heck (1986)
4.1.5 Cioncolini, Thome, and Lombardi (2009)
4.2 Solved Examples
4.3 Problems
References
Chapter 5: Flow Boiling
5.1 Nucleate Boiling Concepts
5.2 Heat Transfer Coefficient for Convective Boiling
5.3 Predictive Methods for Convective Flow Boiling
5.3.1 Liu and Winterton (1991)
5.3.2 Saitoh et al. (2007)
5.3.3 Kandlikar and Co-workers
5.3.4 Wojtan et al. (2005a, b)
5.3.5 Thome and Co-workers
5.3.6 Ribatski and Co-workers (Kanizawa et al. 2016; Sempertegui-Tapia and Ribatski 2017)
5.3.7 Heat Transfer Coefficient Under Transient Heating
5.4 Solved Examples
5.5 Problems
References
Chapter 6: Critical Heat Flux and Dryout
6.1 Introduction
6.2 Hydrodynamic Model
6.3 Macrolayer Model
6.4 Critical Heat Flux During In-Tube Flow
6.5 Solved Example
6.6 Problems
References
Chapter 7: Condensation
7.1 Film Condensation on an Isothermal Surface
7.2 Predictive Methods for In-Tube Convective Condensation
7.2.1 Dobson and Chato (1998)
7.2.2 Cavallini et al. (2006)
7.2.3 Shah (2016)
7.2.4 Jige, Inoue, and Koyama (2016)
7.3 Solved Examples
7.4 Problems
References
Index