Flexible Robotics: Applications to Multiscale Manipulations

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data.

Contents

1. Design of Integrated Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet.
2. Flexible Structures’ Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet.
3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay.
4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe.
5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard.
6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier.
7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard.
8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard.
9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri.
10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche.

About the Authors

Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France.
Nicolas Chaillet, FEMTO-ST, Besançon, France.
Stéphane Régnier, ISIR, UPMC, Paris, France.

Author(s): Mathieu Grossard, Nicolas Chaillet, Stéphane Régnier
Edition: 1
Publisher: Wiley-ISTE
Year: 2013

Language: English
Pages: 416
Tags: Автоматизация;Робототехнические системы (РТС);

Cover......Page 1
Title Page
......Page 5
Contents
......Page 7
Introduction
......Page 15
Chapter 1. Design of Integrated Flexible Structures for Micromanipulation......Page 21
1.1. Design and control problems for flexible structures in micromanipulation......Page 22
1.1.1. Characteristics of manipulation on the microscale......Page 23
1.1.2. Reliability and positioning precision......Page 25
1.1.3. Micromanipulation station......Page 27
1.1.4. Difficulties related to controlling robotic micromanipulators......Page 29
1.2. Integrated design in micromechatronics......Page 31
1.2.2. Active transduction materials......Page 32
1.2.3. Multiphysical models......Page 37
1.2.4. Optimization strategies for micromechatronic structures......Page 40
1.3. Example of an optimal synthesis method for flexible piezoelectric transduction structures......Page 45
1.3.1. Block method......Page 46
1.3.2. General design approach......Page 47
1.3.3. Finite element model......Page 48
1.3.4. Example applications: designing integrated flexible microgrippers......Page 49
1.4. Conclusion......Page 51
1.5. Bibliography......Page 52
Chapter 2. Flexible Structures’ Representation and Notable Properties in Control......Page 57
2.1.1. Dynamic representation......Page 58
2.1.2. Conservative model in the modal basis......Page 59
2.1.3. Damping characteristics......Page 61
2.1.4. Solving equations......Page 63
2.1.5. State-space representation in the modal basis......Page 64
2.1.6. Modal identification and control......Page 65
2.2.1. Overview of state controllability and observability......Page 67
2.2.2. Interpretations of Gramians in the case of flexible structures......Page 70
2.3.1. Balanced realization......Page 72
2.3.2. The Moore reduction technique......Page 73
2.3.3. Modal and balanced realizations equivalence for flexible structures......Page 75
2.4.1. Practical considerations in model reduction......Page 76
2.4.2. Actuator/sensor collocation......Page 78
2.4.4. Modal observability criterion in structure optimization......Page 82
2.4.5. High authority control (HAC)/low authority control (LAC) control......Page 85
2.5. Conclusion......Page 88
2.6. Bibliography......Page 89
3.1. Introduction......Page 93
3.2. Finite-dimensional systems......Page 95
3.2.1. Classic energy models......Page 96
3.2.2. Classic network models......Page 99
3.2.3. Port-Hamiltonian formulation......Page 109
3.3.1. Introductory example......Page 115
3.3.2. Class of considered systems......Page 121
3.3.3. Infinite-dimensional Dirac structure......Page 122
3.3.4. Boundary control systems and stabilization......Page 126
3.4. Conclusion......Page 131
3.5. Bibliography......Page 132
4.1. Introduction......Page 135
4.2.1. Compliant piezoelectric actuators......Page 136
4.2.2. Hysteresis modeling and compensation......Page 139
4.2.3. Modeling and compensating for badly damped vibration......Page 142
4.3.1. Thermal actuators......Page 148
4.3.2. Modeling and identification......Page 151
4.3.3. Bistable module using thermal actuators......Page 156
4.3.5. Digital microrobot......Page 159
4.5. Bibliography......Page 162
Chapter 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers......Page 165
5.1.1. Robotic gripper......Page 166
5.1.2. Versatile gripping concept......Page 168
5.1.3. Dexterous manipulation concept......Page 169
5.2.1. Actuation system......Page 173
5.2.2. Modeling elastic transmissions in “simple-effect” actuation architecture......Page 181
5.3.1. Compliant joints and precision issues......Page 186
5.3.2. Design example of an interphalangeal joint for pluridigital manipulation......Page 189
5.3.3. Deformable contact surfaces......Page 193
5.4. Conclusion......Page 197
5.5. Bibliography......Page 198
6.1. Introduction......Page 201
6.2. Human dexterous manipulation as a basis for robotic manipulation......Page 202
6.2.1. Human hand and finger movements......Page 203
6.2.2. Tactile perception in the human hand......Page 204
6.2.3. Functional specifications of tactile sensing for dexterous manipulation for robotics......Page 206
6.3.1. Resistive sensors......Page 208
6.3.2. Conductive polymers and fabrics......Page 215
6.3.3. Conductive elastomer composites......Page 217
6.3.4. Conductive fluids......Page 221
6.3.5. Capacitive sensors......Page 222
6.3.6. Piezoelectric sensors......Page 226
6.3.7. Optical sensors......Page 229
6.3.8. Organic field-effect transistors......Page 232
6.4. A comparison of sensor solutions and sensing techniques......Page 233
6.5. The Nail sensor......Page 234
6.5.1. Description and working principle......Page 237
6.5.2. Manufacturing process......Page 238
6.6. From the Nail sensor to tactile skin......Page 240
6.6.2. Dimensioning, materials and fabrication process......Page 241
6.6.3. Signal addressing management: a challenge for large arrays and system integration......Page 244
6.7.1. Sensor protection and force transmission......Page 245
6.7.2. Texture analysis device based on the Nail sensor......Page 246
6.8.1. Surface discrimination......Page 248
6.8.2. Roughness estimation......Page 251
6.8.3. Sensory analysis of materials......Page 252
6.9. Summary and conclusion......Page 253
6.10. Bibliography......Page 255
7.1.1. Applications......Page 263
7.1.2. Constraints linked to high-precision and proposed solution principles......Page 265
7.1.3. Several examples of ultra-high-precision robots......Page 266
7.2.2. Degrees of freedom of an elementary joint......Page 268
7.2.3. Parasitic movements......Page 270
7.2.4. Rectilinear and circular flexures......Page 279
7.3.1. Motivation......Page 280
7.3.2. Modular design methodology......Page 281
7.3.3. Application of the concept to very high-precision......Page 283
7.4. Example of the Legolas 5 robot design......Page 284
7.4.1. Flexure-based mechanical design......Page 287
7.4.2. Prototype of the Legolas 5 robot......Page 290
7.4.3. Very high-precision modular parallel robot family......Page 291
7.5. Bibliography......Page 293
8.1. Introduction......Page 295
8.2.1. Sources of flexibilities......Page 296
8.2.2. Dynamic model......Page 297
8.2.3. Reduced dynamic model properties......Page 300
8.2.4. Simplified case study......Page 301
8.3. Identification......Page 304
8.3.1. Identification from additional sensors......Page 306
8.3.2. Identification from motor measurements only......Page 309
8.3.3. Discussion and openings......Page 313
8.4. Motion control......Page 315
8.4.1. Singular perturbation approach......Page 316
8.4.2. Linearization and compensations......Page 319
8.4.3. Particular control methods......Page 324
8.6. Bibliography......Page 330
9.1. Introduction......Page 341
9.2. Newton–Euler model of an elastic body......Page 344
9.2.1. Poincaré equations applied to a rigid body: Newton–Euler model......Page 345
9.2.2. Poincaré equations applied to the elastic body in the floating frame......Page 349
9.2.3. Deformation parameterizing......Page 354
9.3. Kinematic model of a deformable manipulator......Page 357
9.4. Dynamic model of a deformable manipulator......Page 360
9.5.1. Description......Page 362
9.5.2. Definition of imposed movements......Page 364
9.7. Bibliography......Page 366
10.1. Introduction......Page 369
10.2.1. A medical robotic problem......Page 370
10.2.2. Modeling and identification......Page 371
10.2.3. H∞ control
......Page 374
10.2.4. Assessment of the linear control......Page 377
10.3.1. A manipulator with two flexible segments......Page 379
10.3.2. Identification of an LPV model......Page 383
10.3.3. Analysis and synthesis methods for LPV systems......Page 388
10.3.4. Application to the flexible manipulator control......Page 394
10.5. Bibliography......Page 399
List of Authors......Page 403
Index......Page 405