Field-Driven Micro and Nanorobots for Biology and Medicine

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book describes the substantial progress recently made in the development of micro and nanorobotic systems, utilizing magnetic, optical, acoustic, electrical, and other actuation fields. It covers several areas of micro and nanorobotics including robotics, materials science, and biomedical engineering. Field-Driven Micro and Nanorobots for Biology and Medicine provides readers with fundamental physics at the micro and nano scales, state-of-the-art technical advances in field-driven micro and nanorobots, and applications in biological and biomedical disciplines. 

Author(s): Yu Sun, Xian Wang, Jiangfan Yu
Publisher: Springer
Year: 2021

Language: English
Pages: 431
City: Cham

Book Description
Contents
About the Editors
Chapter 1: Fundamentals and Field-Driven Control of Micro-/Nanorobots
1.1 Introduction
1.2 General Architecture of MRI-Guided Nanorobotic Systems
1.3 Propulsion and Navigation Limitations at Microscales
1.4 Theoretical Modeling of Steering and Navigation of Microrobots in a Fluid
1.4.1 Modeling of Physical Forces on Magnetic Microrobots
Hydrodynamics
Apparent Height
Magnetic Force
Contact Forces
Gravitational Forces
Van der Waals Forces
1.4.2 State-Space Representation
1.5 Control Strategies
1.5.1 MRI-Based Backstepping Control Approach
1.5.2 MRI-Based Predictive Control Approach
1.5.3 MRI-Based Optimal Control Approach
1.6 Results
1.7 Conclusion
References
Chapter 2: Ultrasound-Powered Micro-/Nanorobots: Fundamentals and Biomedical Applications
2.1 Introduction
2.2 Fundamentals of Ultrasound Physics
2.2.1 Acoustic Radiation Forces
2.2.2 Fundamentals of Acoustic Streaming
2.3 Designing Ultrasound Micro-/Nanomotors
2.3.1 Microrod Streamers
Early Discoveries
Mechanisms
Biomedical Applications
Practical Considerations
Usefulness in Basic Sciences
2.3.2 Bubble Streamers
Mechanism
Notable Studies
Practical Considerations
2.3.3 Flagellar Streamers
2.3.4 Acoustic Jets
2.4 Conclusion and Future Prospects
References
Chapter 3: Manipulation and Patterning of Micro-objects Using Acoustic Waves
3.1 Introduction
3.2 Forces
3.2.1 Acoustic Radiation Force
3.2.2 Bjerknes Forces
3.2.3 Acoustic Streaming-Induced Drag Forces
3.3 Excitation Methods
3.3.1 Bulk Acoustic Waves
Theory
3.3.2 Design Considerations
3.3.3 Surface Acoustic Waves
Theory
3.3.4 Tweezing
Ultrasonic Beams
Ultrasonic Arrays
Acoustic Structures
3.4 Applications
3.4.1 Standing Waves
3.4.2 Travelling Waves
3.4.3 Acoustic Tweezing and Micro-robots
3.5 Conclusions and Outlook
References
Chapter 4: Light-Driven Microrobots: Mechanisms and Applications
4.1 Introduction
4.2 Optical Microrobot
4.3 Opto-mechanical Soft Microrobots
4.4 Opto-chemical Microrobots
4.5 Conclusion and Outlook
References
Chapter 5: Electric-Field-Driven Micro/Nanomachines for Biological Applications
5.1 Introduction
5.2 Fundamentals
5.2.1 Low Reynolds Number Physics and Laminar Flow
5.2.2 Electrophoresis and the Electric Double Layer
5.2.3 Dielectrophoresis and the Clausius-Mossotti Factor
5.2.4 DC and AC Electroosmosis
DC Electroosmosis
AC Electroosmosis
5.2.5 Combined AC and DC E-Fields for E-Field-Assisted Nano-manipulation
5.2.6 Other Factors to Consider
Brownian Motion and Joule Heating
Properties of the Suspension Medium
5.3 Applications of the Electric-Tweezer Manipulation in Biological Research
5.3.1 Cytokine Molecule Delivery
5.3.2 Cargo Delivery
5.3.3 Tunable Release of Biochemicals for Ultrasensitive SERS Detection
5.3.4 Electrical Capture of Biochemical Molecules
5.3.5 Assembly of Quantum Dot Nanowires for Location Deterministic Biomolecule Sensing
5.4 Conclusion
References
Chapter 6: Electrophoresis-Based Manipulation of Micro- and Nanoparticles in Fluid Suspensions
6.1 Introduction
6.2 Electric Field-Based Particle Manipulation
6.3 EP-Based Motion Model and Problem Formulation
6.3.1 System Configuration
6.3.2 EP-Based Motion Model
6.3.3 Problem Formulation
6.4 EP-Based Particle Motion Control
6.4.1 Nonlinear Feedback Control
Sequential Particle Control and Assembly
Simultaneous Particle Control
6.4.2 Adaptive Control
6.4.3 Adaptive Tube Model Predictive Control
Adaptive Tube MPC Design
Manipulation Capability
Experimental Result
6.5 EP-Based Particle Motion Planning
6.5.1 Heuristic-Based Minimum-Time Motion Planning
6.5.2 Network Flow-Based Minimum-Distance Motion Planning
6.5.3 Sampling-Based Motion Planning
6.6 EP-Based Adaptive Manipulation Scheme of Micro- and Nanoparticles
6.7 Conclusion
References
Chapter 7: Magneto-Acoustic Hybrid Micro-/Nanorobot
References
Chapter 8: Colloidal Microrobotic Swarms
8.1 Introduction
8.2 Field-Driven Microrobotic Swarms
8.3 Vortex-Like Swarms
8.3.1 Vortices Merging
8.3.2 Minimum Particle Concentration of Generating a VPNS
8.4 Characteristics of a VPNS
8.5 Pattern Transformation of VPNS
8.5.1 Core Size Modification
8.5.2 Spread State
8.6 Experimental Results and Discussion
8.6.1 Generating a Vortex-Like Swarm
8.6.2 Characterization of a VPNS
8.6.3 Pattern Transformation of a VPNS
Change of Core Size
Spread State of VPNS
8.6.4 Morphology of Swarm Pattern During Locomotion
Motion in a Synchronized Fashion
Tuneable Trapping Forces of VPNSs
Locomotion in a Channel
Discussion on Imaging Modality
8.7 Conclusion
References
Chapter 9: Shape-Programmable Magnetic Miniature Robots: A Critical Review
9.1 Introduction
9.2 Theory
9.2.1 General Deformation Mechanics
9.2.2 Deformation Mechanics of Shape-Programmable Magnetic Robots with Beam-Like Configurations
9.2.3 Rigid-Body Motion
9.3 Programming and Fabrication Methods
9.3.1 Programming Methods
9.3.2 Fabrication Methods
9.4 Locomotion and Mechanical Functionalities
9.4.1 Locomotion
9.4.2 Mechanical Functionalities
9.5 Discussion
9.6 Conclusion
References
Chapter 10: In Vitro Biosensing Using Micro-/Nanomachines
10.1 Introduction
10.2 Propulsion, Function of Micro-/Nanomachines
10.2.1 Propulsion of Micro-/Nanomachines
10.2.2 Chemical-, Biological-, and Self-Functionalization of Micro-/Nanomachines
10.3 Micro-/Nanomachines for Sensing
10.3.1 Sensing Mechanisms of Micro-/Nanomachines
10.3.2 In Vitro Detection for Chemical and Biological Agent
10.3.3 Intracellular Monitoring of Life-Important Properties and Molecules
10.3.4 Pathogens and Biomarker Discrimination Based on Micro-/Nanomachines
10.4 Conclusion and Perspective
References
Chapter 11: Biophysical Measurement of Cellular and Intracellular Structures Using Magnetic Tweezers
11.1 Introduction
11.2 Principles of Magnetic Micromanipulation
11.2.1 Magnetic Microbead
11.2.2 Magnetic Force and Magnetic Moment
11.2.3 Magnetic Bead Dynamics
11.2.4 Magnetic Tweezers Based on Gradient Force
11.2.5 Magnetic Tweezers Based on Torque
11.3 Mechanical Measurement of Single Cells Using Magnetic Tweezers
11.3.1 Measurements of Cell Mechanics
11.3.2 Measurement of Cellular Rheological Properties
11.4 Mechanical Measurement of Intracellular Structures
11.4.1 Measurement of Cell Nucleus and Cytoskeleton
11.4.2 Measurement of Cytoskeleton, DNA Strands, and Intracellular Motor Proteins
11.5 Summary and Outlook
References
Chapter 12: Hepatic Vascular Network Construction Using Magnetic Fields
12.1 Introduction
12.2 Concept of Research
12.3 System of Magnetic Tweezers
12.3.1 Overall System of Manipulator
12.3.2 Simulation of Magnetic Tweezers
12.4 Method and Materials
12.4.1 Assembly Method of Multilayered Structure
12.4.2 Method of Cell Culture and Viability Test
12.5 Results and Discussion
12.5.1 Hepatic Lobule-Like Vascular Network in Fibrin Gel
12.5.2 Cell Viability in 3D Cellular Structure with Channels
12.6 Conclusion
References
Chapter 13: Biohybrid Microrobots
13.1 Introduction
13.2 The Biological Motors of Motile Cells
13.3 Robots Based on Bacteria
13.3.1 Bacterial Robots Based on Chemotaxis
13.3.2 Bacterial Robots Based on Magnetotaxis or Embedding Paramagnetic Elements
13.3.3 Other Taxis Abilities and Multifunctional Robots
13.4 Microrobots Based on Other Motile Cells
13.4.1 Robots Based on Non-bacterial Flagellated Cells
13.4.2 Robots Based on Non-flagellated Cells
13.5 Challenges and Perspectives of Robots Based on Bacteria and Other Motile Cells
13.6 Muscle Cells as Biological Motors
13.6.1 Robots Based on Cardiomyocytes
13.6.2 Robots Based on Skeletal Muscle Cells
13.6.3 Robots Based on Insect-Derived Cells
13.7 Challenges and Perspectives of Robots Based on Muscle Cells
References
Chapter 14: Microrobots in the Gastrointestinal Tract
14.1 Introduction
14.2 Microrobots in GI Tract: Environmental Features and Propulsion
14.3 Propulsion of Microrobots in GI Tract
14.4 In Vivo Imaging and Localization of Microrobots in GI Tract
14.5 Enhanced Retention and Navigation of Microrobots in GI Tract
14.6 In-Stomach Application of Microrobots: Cargo Delivery and Therapy
14.7 Intestinal Application of Microrobots: Cargo Delivery
14.8 Biocompatible and Biodegradable
14.9 Conclusion and Future Prospects
References
Chapter 15: Polymer-Based Swimming Nanorobots Driven by Chemical Fuels
15.1 Introduction
15.1.1 Challenges of Propulsion in Micro-/Nanoworld
15.1.2 Lessons from Natural Nanoswimmers
15.1.3 From Natural Biomotors, Molecular Motors, Toward Swimming Nanorobots
15.2 Bottom-Up Fabrication of Polymer-Based Swimming Nanorobots
15.2.1 Layer-by-Layer Assembly Technique
15.2.2 Supramolecular Assembly
15.2.3 Biological Hybridization
15.3 Motion Control
15.3.1 Navigation Using External Field
15.3.2 Chemotaxis
15.3.3 Autonomous Sense and Act
15.4 Polymer Nanorobots In Vivo
15.4.1 Benefits of Propulsion Function in Active Therapy
15.4.2 Imaging and Control of Polymer Nanorobots In Vivo
15.4.3 Active Therapy of Nanorobots In Vivo
15.5 Conclusion
References
Chapter 16: Magnetic Micro-/Nanopropellers for Biomedicine
16.1 Introduction
16.2 Theory of Micro-propulsion by Rotation-Translation Coupling
16.3 Fabrication of Micro- and Nanopropellers by Glancing Angle Deposition (GLAD)
16.4 Magnetic Actuation Systems
16.4.1 Permanent Magnet Actuation Systems
16.4.2 Electromagnetic Actuation System
16.5 Biocompatible Magnetic Materials for Micro-/Nanorobots
16.5.1 Criteria for Magnetic Materials
Biocompatibility
Magnetic Properties: Coercivity
Magnetic Properties: Remanence
Biodegradability
3D Nanostructuring
16.5.2 Magnetic Materials for Biomedical Applications
FePt a Strong Magnetic Material for Nanodevices
Fabrication and Characterization of FePt Nanopropellers
Biocompatibility Tests and Gene Delivery
16.6 Conclusion
References
Index