Exoemission from Processed Solid Surfaces and Gas Adsorption

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on surface activity of electron emission (EE). Prior to protective painting, a steel surface is usually grit blasted or sandblasted to remove scale and contaminants and to roughen the surface. This book emphasizes that such surface treatment causes EE, increasing the strength of paint adhesion. Introduced here are the experimental results of thermally assisted photoelectron emission (TAPE) and tribo-stimulated (rubbing) electron emission (TriboEE) from practical metals after different kinds of surface-treatment processes. A detailed description is given of how Arrhenius activation energies relating to electron transfer through the surface overlayer and also the energy levels of electrons trapped in the overlayer can be obtained, and how TAPE and TriboEE data can be influenced by the chemical properties of that overlayer. This book is composed of four parts: I. Surface treatment processes; II. The principle of EE analysis used for practical surfaces; III. Materials and methods of EE and X-ray photoelectron spectroscopy (XPS); IV. EE and XPS characteristics of practical surfaces. In the last part, the EE and XPS results for metals, semiconductors, and carbon materials are drawn from the author’s own publications. The book will be useful for researchers engaging in surface-treatment processes of various materials.

Author(s): Yoshihiro Momose
Series: Springer Series in Surface Sciences, 73
Publisher: Springer
Year: 2023

Language: English
Pages: 237
City: Singapore

Preface
Contents
Part I Introduction
1 Surface Phenomena and Exoemission
1.1 Pertinence of Exoemission to Surface Phenomena
1.1.1 Involvement in Surface Chemical Technology
1.1.2 Work Function and Analysis Methods of Electron Emission
1.2 Exoemission Phenomena of Processed Surfaces
1.2.1 Importance of Exoemission Studies for Processed Surfaces
1.2.2 Historical Background
1.3 Exoemission Measurements of Processed Surfaces
1.3.1 External Treatments and Terminology of Exoemission
1.3.2 Trend of Current Studies
1.3.3 Measurement Apparatus and Surface Cleanliness
1.3.4 Origin of Exoemission
References
Part II EE Mechanism of Metals Subjected to Adsorption
2 EE of Clean Metals: Adsorption of Mainly O2 and H2O in the UHV and HV
2.1 Specification of Practical Surfaces
2.2 Development of Chemiemission
2.3 EE Attributable to Adsorption of Electronegative Gases
2.3.1 EE During Oxidation of Cs Films Deposited on Ru
References
3 EE from Metal Surfaces Covered with Oxide: Adsorption of Mainly O2 and H2O and Oxide-Film Thickness
3.1 OSEE Observed in the UHV and HV for Al2O3/Al
3.2 EE Observed in Air for MgO/Mg, Al2O3/Al, and NiO/Ni
3.3 EE Observed in Counter Gas for Oxide-Covered Metal Surfaces of Sn, Al, Fe, Ni, and Cu
References
4 Effects of Organic Adsorption, Applied Voltage, Light Irradiation, and Catalytic Activity
4.1 Effect of Adsorption on OSEE from Al
4.2 Effect of AV and Light Intensity on OSEE from Al
4.3 Relation Between EE and Catalytic Activity of Ag, Cu, and Pt
References
Part III Outline of Development of EE Research
5 Materials, EE Measurement, and EE Characteristics
5.1 EE Measurement Methods and EE Data Analysis Methods
5.2 Stimulation by Thermal, Optical, and Tribological Methods After Excitation
5.3 Nomenclature of EE Categorized by Stimulation Methods
References
6 TSEE Related to Plasma Treatment and Adsorption
6.1 Outline of TSEE of Metal Surfaces After Plasma Treatment
6.2 Effect of Discharge, Adsorption, and Heat Treatment on TSEE from Metals
6.2.1 TSEE from Spark-Discharged Fe Surfaces and Adsorption
6.2.2 TSEE from Oxidized and Plasma-Treated Ni Surfaces
6.2.3 TSEE After Electric Discharge Treatment and Chemical Reduction of Cu Surfaces
6.3 TSEE from Glass on Au Surfaces, Au, Ni, Si, and Graphite Subjected to Plasma Exposure; and XPS Analysis
6.3.1 TSEE from Glass Deposited on Au Metal Surfaces
6.3.2 TSEE from Au and Ni Metal Surfaces to Exposed to Ar and O2 Plasma
6.3.3 TSEE from Ni Metal Surfaces Exposed to Ar and O2 Plasma
6.3.4 TSEE from Si Wafer Powder Exposed to Ar Plasma
6.3.5 TSEE from Graphite Exposed to CF4, Ar, and O2 Plasma
References
7 Effects of Blasting and Grinding Agents as Well as Cutting Fluids on TSEE from Mechanically Deformed Surfaces
7.1 TSEE from Sandblasted Mild Steel and Ground Sand
7.1.1 TSEE from Sandblasted Mild Steel and Adsorption of Organic Vapors
7.1.2 TSEE from Ground Sand Granules (Aluminosilicate) and Adsorption of Organic Vapors
7.2 EE from Metals and Plastics Blasted or Ground with Abrasive Agents
7.2.1 TSEE from Metals Blasted with Silicon Carbide (SiC)
7.2.2 EE from Plastics Abraded with Al2O3 and SiC
7.3 TSEE from Metal Surfaces Subjected to Cutting and Grinding
7.3.1 TSEE from Al Surfaces Cut with a Tool Steel and Effect of Cutting Fluids
7.3.2 EE from Metals During Cutting with WC and Friction
7.3.3 TSEE Under Light Illumination from Low-Carbon Steel Surfaces Ground with Al2O3
References
Part IV TAPE, TPPE, TriboEE, and XPS Characteristics of Processed Surfaces
8 TAPE of Rolled and Scratched Fe Metal Surfaces
8.1 Temperature Dependence of PE from Rolled Fe Surfaces
8.2 Wavelength Dependence of PE from Rolled Fe Surfaces
8.3 PE from Practical Fe Surfaces Scratched in Air, Water, and Organic Liquids
8.3.1 PE in Temperature Scans of Scratched Fe Surfaces and XPS Analysis
8.3.2 Activation Energy of PE from Scratched Fe Surfaces
8.3.3 PE in Wavelength Scans of Scratched Fe Surfaces
8.4 Temperature Analysis of PE and XPS Data of Scratched Fe Surfaces
References
9 TAPE of Si Wafers
9.1 Effect of Adsorption of O2 and H2O on EE from Si
9.2 PE from Si Wafers and Activation Energy
9.3 PE from Si Wafer Surfaces Implanted with H, Si, and Ar Ions
References
10 TPPE Characteristics of Various Metal Surfaces
10.1 Outline of TPPE for Metal Surface Analysis
10.2 TPPE Characteristics and XPS Analysis
10.2.1 Temperature Dependence of PE Total Count
10.2.2 XPS Characteristics
10.2.3 TPPE Characteristics and Gas Adsorption Properties
10.3 TPPE Characteristics of Metals and Surface Pretreatment Methods
References
11 TriboEE Occurring from Metal Surfaces During Sliding Contact with a Polymer Rod
11.1 Outline of TriboEE from Metal Surfaces
11.1.1 Electron Emission During Sliding Contact Between Metals and Polymers
11.1.2 Effect of Surface Pretreatments of Metals on TriboEE
11.1.3 Effect on TriboEE of Plasma-Polymerized Films Formed on Metal Surfaces
11.2 Dependence of TriboEE Intensity on Elemental Metals
11.2.1 TriboEE Intensity of Elemental Metals
11.2.2 Relationship of TriboEE Intensity of Metal Surfaces to the Work Function and Surface Potential
11.2.3 TriboEE from Metal Surfaces Covered with an Oxide Film and Its Relationship to the Heat of Formation of Metal Oxides
References
12 Relationship of the EE Intensity of Metal Surfaces to Their Chemical Activity and Electrostatic Attractive Force
12.1 Application of TPPE to Cu Surfaces
12.1.1 Electrochemical Reduction of CO2 on Cu Electrodes and TPPE
12.1.2 TPPE Characteristics of Cu Subjected to Cleaning and Abrasion in Air, Water, and Alcohols
12.2 Corrosion Protection of Al Surfaces by Plasma-Polymerized Coatings and TPPE
12.3 Corrosion Protection of Fe, Ni, and Cu Metal Surfaces by Plasma-Polymerized Coatings, and Its Relationship to the Electronic Properties of Metals
12.3.1 Effect of TPPE on Electrostatic Attractive Force Between Metals, Semiconductors, and Tribocharged Polymers
References
Index