Evolution from a Thermodynamic Perspective: Implications for Species Conservation and Agricultural Sustainability

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Survival of the fittest” is a tautology, because those that are “fit” are the ones that survive, but to survive, a species must be “fit”. Modern evolutionary theory avoids the problem by defining fitness as reproductive success, but the complexity of life that we see today could not have evolved based on selection that favors only reproductive ability. There is nothing inherent in reproductive success alone that could result in higher forms of life. Evolution from a Thermodynamic Perspective presents a non-circular definition of fitness and a thermodynamic definition of evolution. Fitness means maximization of power output, necessary to survive in a competitive world. Evolution is the “storage of entropy”. “Entropy storage” means that solar energy, instead of dissipating as heat in the Earth, is stored in the structure of living organisms and ecosystems. Part one explains this in terms comprehensible to a scientific audience beyond biophysicists and ecosystem modelers. Part two applies thermodynamic theory in non-esoteric language to sustainability of agriculture, and to conservation of endangered species. While natural systems are stabilized by feedback, agricultural systems remain in a mode of perpetual growth, pressured by balance of trade and by a swelling population. The constraints imposed by thermodynamic laws are being increasingly felt as economic expansion destabilizes resource systems on which expansion depends.

Author(s): Carl F. Jordan
Publisher: Springer
Year: 2021

Language: English
Pages: 410
City: Cham

Preface
Acknowledgments
Contents
Abbreviations
Part I: Theory
To Understand Economics, Follow the Money; To Understand Ecosystems, Follow the Energy
Chapter 1: Two Views of Ecology, Evolution, and Conservation
1.1 Why I Wrote this Book
1.1.1 Dualities Still Impede Conservation Efforts
1.2 The Intergovernmental Science-Policy Platform of Biodiversity and Ecosystem Services (IPBES)
1.2.1 Targets for Conservation
1.3 Evolving Objectives
1.3.1 Literature Review
1.3.2 Updating Ecosystem Ecology
References
Chapter 2: What Can We Learn by Studying Ecosystems that We Can’t Learn from Studying Populations?
2.1 The Predator-Prey Conundrum
2.2 The Serengeti Ecosystem
2.2.1 Evolution in the “Ecological Theater”
2.2.2 Predator-Prey Interactions Tell Only Part of the Story
2.2.3 Evolution in the “Thermodynamic Theater”
2.2.3.1 Ruminants
2.2.3.2 Adaptation of Ruminants in the Serengeti
2.2.3.3 Productivity in the Serengeti
2.2.3.4 Fitness Results from Synchronous Evolution
2.2.3.5 What Have We Learned?
References
Chapter 3: A Thermodynamic Definition of Ecosystems
3.1 Ecosystems in the Twentieth Century
3.1.1 Cycling of Strontium-90
3.1.2 Cesium-137 in Food Chains
3.1.3 Recycling of Isotopes in Norwegian Sheep
3.2 Ecological Energetics
3.2.1 Is it Time to Bury the Ecosystem Concept?
3.2.2 A Thermodynamic Definition of Life
3.2.3 A Thermodynamic Definition of Ecosystems
3.2.4 The Phase Transition Between Order and Chaos
References
Chapter 4: Thermodynamic Characteristics of Ecosystems
4.1 Equilibrium
4.1.1 The Equilibrium Law
4.1.2 Thermodynamic Equilibrium
4.2 Open Thermodynamic Systems
4.2.1 Ecosystems Are Thermodynamically Open Non-Equilibrium Systems
4.2.2 Work Is Performed by Non-equilibrium Systems
4.2.3 Advantage of a Thermodynamically Open System
4.3 Ecosystems Are Entropic
4.4 Ecosystems Are Cybernetic
4.4.1 Cybernetic Systems
4.4.2 Economic Systems Are Cybernetic
4.4.3 The Ecosystem Feedback Function
4.4.4 Indirect vs. Direct Feedback
4.4.5 Deviation Dampening and Amplifying Feedback
4.4.6 Set Points
4.5 Ecosystems Are Autocatalytic
4.6 Ecosystems Have Boundaries
4.7 Ecosystems Are Hierarchical
4.7.1 Hierarchy in Physical Systems
4.7.2 Hierarchy in Ecological Systems
4.7.3 Common Currencies
4.7.4 Macro- and Micro-system Models
4.7.5 Why an Ecosystem Model that Includes Everything Is Not Possible
4.7.6 A Nested Marine Community
4.8 Ecosystems Are Deterministic
4.9 Ecosystems Are Information Rich
4.9.1 An Engineering Definition of Information
4.9.2 Information to Facilitate Exchange
4.9.3 High Energy Information
4.9.4 Low Energy Information
4.9.5 Information Theory
4.9.6 Genetic Information
4.10 Ecosystems Are Non-teleological
4.11 Criticisms of Ecosystem Models
References
Chapter 5: Ecosystem Control: A Top-Down View
5.1 Two Ways to Look at Systems
5.2 Composing and Decomposing Trophic Webs
5.2.1 Decomposers in Soil Organic Matter
5.2.2 Decomposers in Marshes and Mangroves
5.3 Control of Systems
5.3.1 Top-Down vs. Bottom-Up
5.3.2 Top-Down Exogenous Control
5.3.3 Exogenous Impacts and Stability
5.3.4 Top-Down Endogenous Control
5.4 Endogenous Control Through Nutrient Recycling
5.4.1 Autocatalysis
5.4.2 Control of Microbial Activity
5.4.3 Inhibition of Microbial Activity by Leaf Sclerophylly
5.4.4 Inhibition of Microbial Activity by Chemical Defenses
5.4.5 Inhibition of Microbial Activity by Ecological Stoichiometry
5.4.6 The Synchrony Principle
5.4.7 The Decay Law
5.4.8 Direct Nutrient Cycling
5.4.9 The Role of Animals
5.5 Marine Systems
5.5.1 Nutrient and Energy Recycling
5.5.2 Exogenous Control
5.6 Control in Lakes
5.7 Control in Managed Ecosystems
References
Chapter 6: Ecosystem Control: A Bottom-Up View
6.1 Species as Arbitrageurs of Energy
6.1.1 Relation Between Rate of Flow and Mass in Hydraulic Systems
6.1.2 Relation Between Population Biomass and Rate of Energy Flow
6.2 Equilibrium
6.2.1 Mechanisms of Adjustment
6.2.2 Adjustments and Climate Change
6.2.3 Bird Populations
6.2.4 Dis-equilibrium
6.3 Population Instability vs. Ecosystem Instability
6.4 Control by Interactions: Direct vs. Indirect
6.4.1 Indirect Interactions
6.5 Direct Interactions
6.5.1 Predator – Prey
6.5.2 Mutualisms
6.5.3 Competition
6.5.3.1 Competition Leads to Complementarity and Formation of Thermodynamic Niches
6.5.3.2 Competition in Terrestrial and Marine Systems
6.5.3.3 Ecosystem Competition
6.5.3.4 Nature, Red in Tooth and Claw
6.5.4 Decomposition
6.5.5 Parasitism and Disease
6.5.6 Commensalism and Amensalism
6.5.7 Persistence of Negative Interactions
References
Chapter 7: Ecosystem Stability
7.1 Background
7.2 A Thermodynamic Definition
7.2.1 Regime Shift
7.2.2 Metastability
7.2.3 Pulsed Stability
7.2.4 Resistance and Resilience
7.3 Species Richness and Functional Stability
7.4 Species Richness and Cultural Values
7.5 Keystone Species, and Population and Ecosystem Stability
7.5.1 Keystone Species in the Yellowstone Region of Wyoming
References
Chapter 8: Case Studies of Ecosystem Control and Stability
8.1 Walden
8.1.1 “Harmony in Nature”
8.1.2 Feedback Produces Nature’s “Harmony”
8.1.3 Feedback Mechanisms
8.2 Perturbations in Amazonian Rain Forests
8.3 Top-Down Control
8.3.1 The San Carlos Project: A Small-scale, Low Intensity, Short Duration Disturbance
8.3.1.1 Nutrient Recycling
8.3.1.2 Feedback Control: Tree-fall Gaps
8.3.1.3 Feedback Control: Shifting Cultivation
8.3.1.4 Phosphorus Dynamics
8.3.1.5 Tropical Agriculture on Richer Soils
8.3.2 The Jarí Project: A Large-scale, High Intensity, Long Duration Disturbance
8.4 Bottom-Up Control
8.4.1 The El Verde Project
8.4.1.1 Perturbation = Ionizing Radiation
8.4.1.2 Conclusion
8.4.2 The Long-Term Ecological Research Project in Puerto Rico
8.4.2.1 Perturbation = Hurricanes
8.4.2.2 Conclusion
8.4.3 The Lago Guri Island Project
8.4.3.1 Perturbation = Elimination of Top Predators
8.4.4 The Biological Dynamics of Tropical Rainforest Fragments Project
8.4.4.1 Perturbation = Deforestation
8.4.4.2 Changes in Intact Forests
8.4.4.3 Species Response to Fragmentation
8.4.4.4 Conclusion
8.5 What Have Case Studies Taught Us About Stability of Tropical Ecosystems?
8.5.1 Tropical Ecosystems Are Stable
8.5.2 Tropical Ecosystems Are Unstable
8.5.3 Energy Flow in Tropical Savannas and Rain Forests
8.5.4 Insects in Tropical Ecosystems
8.6 Application of Lessons to Other Regions
8.6.1 Relevance to Temperate Zones
8.6.2 Relevance to Aquatic Ecosystems
8.6.3 The Experimental Lakes Project (Ecosystem Control of Species)
8.6.4 Lake Mendota Studies (Species Control of Ecosystems)
8.7 Case Studies as Tests of Thermodynamic Theory
References
Chapter 9: Entropy and Maximum Power
9.1 Entropy
9.2 Entropy in a Steel Bar
9.3 Thermodynamic Equilibrium
9.4 Entropic Gradients
9.5 Capturing and Storing Entropy
9.5.1 Evapotranspiration and Entropy Reduction
9.5.2 Life Is a Balance Between Storing and Releasing Entropy
9.5.2.1 Potential Entropy
9.5.2.2 Entropy and Life
9.5.3 The Law of Maximum Entropy Production
9.5.4 Energy for Metabolism as Well as Growth
9.5.5 Unassisted Entropy Capture Is a Unique Characteristic of Life
9.6 Entropy Storage by Ecosystems
9.6.1 What Causes Entropy to Be Stored?
9.6.2 Entropy Storage by Animals
9.7 Capturing Pressure
9.8 Entropy and Time
9.8.1 Time’s Speed Regulator
9.8.2 Efficiency of Energy Transformations
9.8.3 Passage of Time for Cats
9.9 The Maximum Power Principle
9.10 Optimum Efficiencies for a Truck and Its Driver
9.11 Sustainability
References
Chapter 10: A Thermodynamic View of Succession
10.1 The Population View
10.2 The Thermodynamic View
10.2.1 Leaf Area Index and Succession
10.2.2 Power Output as a Function of Leaf Area Index
10.2.3 What Causes Changes in Leaf Area Index?
10.2.4 Maximum Entropy Production Principle
10.2.5 Successional Ecosystems Move Further from Thermodynamic Equilibrium
10.3 The Strategy of Ecosystem Development
10.3.1 A Problem with Odum’s Strategy
10.3.2 Why Power Output Continues to Increase
10.4 Revised Definition of Maximum Power
10.4.1 Costs of Ecosystem Stabilization
10.4.2 Transactional Costs
10.5 Succession, Power Output, and Efficiency
10.5.1 Kleiber’s Law
10.6 Are Ecosystems Spendthrifts?
10.7 Interactions Between Species Facilitate Increase in Power Output
10.7.1 Facilitation
10.7.1.1 Facilitation During Primary Succession
10.7.1.2 Facilitation During Secondary Succession
10.7.2 Tolerance
10.7.3 Inhibition
10.8 Intermediate Disturbance Hypothesis
10.9 Nutrient Use Efficiency During Succession
10.9.1 Succession Following Logging Versus Following Agriculture
10.10 Thermodynamic View of Succession: Implications for Resource Management
References
Chapter 11: Panarchy
11.1 The Universal Cycle of Systems
11.1.1 Panarchy
11.2 Thermodynamic Interpretation of the Sacred Rules
11.2.1 Growth and Consolidation
11.2.2 Collapse
11.2.3 Renewal
11.3 Sub-systems
11.4 Panarchy Over Two Billion Years of Evolution
11.5 Consolidation, Bureaucracy and System Collapse
11.5.1 Bureaucracy in Action (Case Studies)
11.6 Case Study: Panarchy in the Georgia Piedmont
11.6.1 Thermodynamic Interpretation
References
Chapter 12: A Thermodynamic View of Evolution
12.1 Life: A Physicist’s View
12.1.1 Life Is Produced by Capturing Entropy
12.1.2 The Origin of Life
12.2 Two Approaches to Evolution
12.2.1 The Eco-Evo-Devo View
12.2.1.1 The Genetic View
12.2.2 The Thermodynamic View
12.2.2.1 Evolution Is the Storage of Entropy
12.2.2.2 Embedded and Embodied Energy
12.2.2.3 Entropy Storage Is a Powerful Tendency of Nature
12.2.3 Fitness
12.2.3.1 The Probability of Higher Forms of Life
12.2.3.2 Thermodynamic Fitness
12.2.3.3 The Opposable Thumb, Intelligence, and Power Output
12.2.3.4 Fitness and the Complexity of Higher Forms of Life
12.2.3.5 The Role of Competition
12.2.4 The “Goal” of Evolution
12.3 The Relationship Between Species and Environment
12.3.1 Evolution’s “Theater”
12.3.2 Is Evolution Stochastic or Deterministic?
12.4 Ecosystem Evolution
12.4.1 Succession Was the Clue
12.4.2 Ecosystems Moved Away from Equilibrium
12.4.3 Thermodynamic Mechanisms
12.4.3.1 Entropy Storage
12.4.3.2 Gradient Reduction
12.4.3.3 Thermodynamic “Obligations”
12.4.4 Biological Mechanisms
12.4.4.1 Autocatalysis
12.4.4.2 Increased Rate of Feedback
12.4.4.3 Power-Enhancing Interactions
12.4.5 Ecosystem Fitness
12.4.6 Ecosystems Evolve One Step at a Time
12.4.6.1 Ecosystem Migration
12.4.6.2 How Food Webs Were Built
12.5 The Origin of Ecosystems
12.5.1 Origin of Feedback Loops
12.5.2 Origin of Trophic Levels
12.5.3 Why Are There Trophic Levels?
12.5.3.1 Phylogenetic Structure of Trophic Levels
12.5.3.2 The Importance of Animals
12.6 The “Goal” of Ecosystem Evolution
12.6.1 Conflicting Goals?
12.6.2 “Motivations” of Species
12.6.3 The Earth Ecosystem
12.6.4 Why Is There Resistance to the Idea of Ecosystem Evolution
12.6.5 Evolution of Economic Systems
12.7 A Thermodynamic Model of Ecosystem Evolution
12.7.1 Network Models
12.7.1.1 The First Ecosystem
12.7.1.2 Evolution of Trophic Chains and Trophic Levels
12.7.1.3 Fixation of Links in Food Chains
12.7.1.4 Addition of Herbivores
12.7.1.5 Addition of Predators
12.7.1.6 Minimum Energy Necessary for Food Chain Elongation
12.7.2 Increase in Complexity of Trophic Webs
12.7.2.1 The “Great Oxidation Event”
12.7.2.2 The Braakman Model
12.7.3 Evolution of Trophic Webs
12.7.3.1 Reinforcing Design Motifs
12.7.3.2 A Test of the Model
12.7.4 Life Moves Ashore
12.7.4.1 Evolution of Terrestrial Ecosystems
12.8 Biodiversity and the Five Great Extinctions
12.8.1 The Cretaceous-Tertiary (K-T) Boundary Extinction
12.8.2 The Amazing Sustainability of Trophic Chains
12.8.3 A Test of Thermodynamic Theory
12.8.3.1 The Study
12.9 Panarchy and Evolution
12.10 Thermodynamic Requirements for Living Systems on Other Planets
References
Chapter 13: Why Is Species Diversity Higher in the Tropics?
13.1 Tropical Explorations
13.2 A Few Theories
13.3 A Thermodynamic Explanation
13.3.1 The Latitudinal Energy Gradient
13.3.2 The Latitudinal Productivity Gradient
13.3.2.1 What Does Productivity Mean?
13.3.2.2 Forests as Sinks for Energy and Carbon Dioxide
13.3.3 The Data
13.3.4 Other Factors Affecting Productivity
13.3.4.1 Rapid Nutrient Recycling
13.3.4.2 Photosynthesis: Respiration Balance
13.3.4.3 Productivity and Stressful Environments
13.4 Empirical Evidence for a High Productivity High Diversity Correlation
13.5 Humboldt’s Enigma
13.5.1 Are Productivity and Species Richness Correlated on Tropical Mountains?
13.6 The Mechanism Linking Productivity and Diversity
13.7 Answer to “Why Is Species Diversity Higher in the Tropics?”
13.7.1 Differences Within the Tropics
13.8 Why Is Species Diversity Low at High Latitudes?
13.9 An Economic Perspective on Diversity
13.9.1 Energy Flow, Economic Growth and Professional Diversity
References
Chapter 14: What Have We Learned by Viewing Evolution from a Thermodynamic Perspective?
14.1 What We Have Learned
14.1.1 Fitness Means Maximization of Power Output
14.1.2 Feedback Is Essential for Control
14.1.3 Control of Energy Flow Occurs Both Top-down and Bottom-up
14.1.4 Storage of Entropy Is a Powerful Characteristic of Living Systems
14.1.5 Evolution Is the Storage of Entropy
Chapter 15: Objections to the Ecosystem Concept
15.1 Criticisms of the Ecosystem Concept
15.1.1 Ecosystems Are Abstractions
15.1.2 Ecosystems Are Ephemeral
15.1.3 Ecosystems Are Oversimplifications
15.1.4 The Ecosystem Concept Is Merely a Paradigm
15.1.5 The Ecosystem Concept Is Not Based on Facts
15.2 Ecosystems Are Not Cybernetic
15.3 Inappropriate Machine Analogies
15.4 Objections to Ecosystem Evolution
15.4.1 No Measure of Fitness
15.4.2 Evolution Has No Goals
15.4.2.1 Diversity as a Goal
15.4.3 The Theory Can’t Be Tested
15.4.4 No Mechanisms
15.4.5 Contradicts Neo-Darwinism
15.4.6 Restricted Definition
15.5 Setting Up a Straw Man
15.6 Harmony in Nature?
15.7 Conservatism
References
Chapter 16: What Has Thermodynamics Taught Us About Conservation?
16.1 “Habitat” Is Not Synonymous with “Ecosystem”
16.2 Conservation and Feedback
16.3 A Few Case Studies
16.3.1 The Serengeti
16.3.2 Black Footed Ferret
16.3.3 Golden Lion Tamarin
16.3.4 Whooping Cranes
16.3.5 Puerto Rican Parrot
16.4 Conserving Feedback Loops
16.5 The Importance of Reservoirs for Recovery of Feedback Loops
16.6 Biodiversity Hotspots
16.7 A Conservationist’s Dilemma
16.8 Conservation and Feedback: A Final Word
References
Part II: Application
Thermodynamic Laws and Agriculture
Chapter 17: A Farmer’s Dilemma
17.1 How Ecosystems and Economic Systems Are the Same
17.2 How Ecosystems and Economic Systems Are Different
17.3 Planet Earth Is a Feedback System
References
Chapter 18: Agricultural Problems Are Systems Problems
18.1 The Morrill Land-Grant Acts
18.2 Agricultural Colleges
18.2.1 The Evolution of Agricultural Research
18.2.2 Reductionism
18.2.3 The Empirical Approach
18.2.4 The Analytical Approach
18.3 Agricultural Development Models
18.3.1 The Ratchet Effect
18.3.1.1 Jevons’ Paradox
18.4 The Systems Approach
18.4.1 Adaptive and Deterministic Cycles
18.4.2 Business Cycles and New Paradigms
References
Chapter 19: Instability in Economic Food Systems
19.1 Pressures for Economic Expansion
19.1.1 Political Pressures
19.1.2 Humanitarian Challenges
19.1.3 Invested Academic Interests
19.2 Instability of Economic Food Systems: External Factors
19.2.1 Booms and Busts
19.2.2 Vulnerability of Farmers
19.3 Instability of Economic Food Systems: Internal Factors
19.3.1 Source of Energy for Yield
19.4 Lack of Feedback: Case Study
19.4.1 Data
19.4.1.1 Energy Inputs
19.4.1.2 Energy Returned on Energy Invested
19.5 Control in Ecological vs. Economic Systems
19.6 The Emergence of Feedback and Control
19.7 Stability of Economic Food Systems
References
Chapter 20: Energy Efficiency in Agricultural Systems
20.1 Two Kinds of Energy
20.2 Early Comparisons of Energy Use Efficiency
20.3 Energy Returned on Energy Invested
20.4 EROI for Industrial Corn
20.4.1 Production Functions
20.4.2 An Energy Production Function
20.5 Economic Considerations
20.5.1 Income
20.5.2 Costs
20.5.3 Profit
20.6 A Farmer’s Dilemma
20.7 The Maximum Power Principle and Economic Theory
References
Chapter 21: The First Law of Thermodynamics and Genetic Engineering (There Is No Free Lunch)
21.1 Source of Energy for Increased Crop Yield
21.1.1 Endosomatic Energy
21.1.2 Hybridization
21.1.3 High Yield Rice
21.2 Domestication of Balsas teosinte
21.2.1 Calculations
21.2.2 Mechanisms
21.3 Other Tradeoffs
21.4 The Free Lunch Has Already Been Eaten
References
Chapter 22: Top-Down Vs. Bottom-Up Control in Resource Management Systems
22.1 Background
22.2 Experimental Site and Methods
22.2.1 Methods
22.2.1.1 Currency for Models
22.2.1.2 Standardization of Currency
22.2.2 Traditional Agroforestry (Hierarchical Level – The Ecosystem)
22.2.3 Organic Production (Hierarchical Level – The Local Economic Community)
22.2.4 Sun Coffee Plantation (Hierarchical Level – The Corporate Economy)
22.3 System Comparisons
22.3.1 Energy Input
22.3.2 Output
22.3.3 Results
22.4 Discussion
22.4.1 Effect of Energy Sources on System Outputs
22.5 Conclusions
22.5.1 Feedback and Environmental Sustainability
22.5.2 Economic Sustainability
References
Chapter 23: Services of Nature in Agricultural Systems
23.1 Services of Nature
23.2 The Nutrient Recycling Service of Nature
23.2.1 Erosion Prevention
23.3 Energy in Agricultural Systems
23.3.1 Embedded Energy
23.3.2 Embodied Energy
23.4 The Systems Analyzed
23.5 Summary of Results
23.6 Discussion
23.6.1 Shifting Cultivation
23.6.2 High Rates of Return on Exosomatic Inputs
23.6.2.1 The Iowa Case
23.6.3 Low Rates of Return on Exosomatic Inputs
23.6.4 Rates of Return on Endosomatic Inputs
23.6.5 Sustainability
23.6.6 Benefits and Costs of Herbicides
References
Chapter 24: Optimizing Sustainability
24.1 Two Views of Sustainability
24.2 A Compromise for Agriculture
24.2.1 Value of Services of Nature (Endosomatic Inputs)
24.2.2 Value of Exosomatic Inputs
24.2.3 Energy Vs. Dollars as a Measure of Sustainability
24.3 An Economic Model for Compromise
24.4 Case Studies
24.4.1 Pest Control by Services of Nature
24.5 Trends
References
Chapter 25: Agriculture that Incorporates Services of Nature
25.1 Environmentally Benign Agriculture
25.2 Intercropping
25.3 Regenerative Agriculture
25.4 Agroforestry
25.4.1 Agroforestry in Tropical Regions
25.4.1.1 Taungya
25.4.1.2 Alley Cropping
25.4.1.3 Sloping Agricultural Land Technology
25.4.1.4 Shade Grown Coffee
25.4.1.5 Biodiversity Islands
25.4.1.6 Tropical Agroforestry Products
25.4.1.7 Importance of Rule of Law
25.4.2 Agroforestry in the Temperate Zone
25.4.2.1 Shade Grown Blueberries
25.5 Disadvantages of Agroforestry
25.6 The Governmental Perspective
References
Chapter 26: Rebuilding Natural Capital: A Case Study
26.1 The Nature of Capital
26.1.1 Depletion of Natural Capital
26.2 Rebuilding Natural Capital
26.3 An Obstacle to Rebuilding Natural Capital
Reference
Chapter 27: Can Organic Agriculture Feed the World?
27.1 Organic Agriculture vs. Low- Energy-Input Agriculture
27.2 Organic Agriculture vs. Conventional Agriculture
27.3 Can Agriculture Dependent on Low Energy Input Feed the World?
27.4 Yield Is Not the Problem
References
Chapter 28: What Has Thermodynamics Taught Us About Sustainability?
28.1 What Have We Learned by Viewing Resource Management from a Thermodynamic Perspective?
28.1.1 Services of Nature Are Not Free
28.2 Valuing Nature’s Services and Natural Capital
28.2.1 Natural Capital Is Not Recognized
28.2.2 National Capital
28.3 Energetic Value of Nature’s Services
28.4 Taxes, Fees, and Reimbursements
28.5 Case Studies
28.5.1 Agriculture (The Plowman’s Folly)
28.5.2 Fisheries
28.5.3 Forestry
28.5.4 Species Conservation
28.5.5 Wildlife Management
28.5.6 Flood Control
28.5.7 Landscape Management
28.5.8 Climate Change
28.6 Natural Resources and the Free Market System
References
Part III: Conservation
Conservation of Resource Systems Means Preserving the Services of Nature
A Philosophy of Conservation
Chapter 29: In Wilderness Is the Preservation of the World
29.1 Sacred Groves
29.2 Information Is Stored in Sacred Groves
29.3 Wilderness as a Resource Bank for Nature’s Services
References
Appendix 1: Cycling of Strontium-90 in a Tropical Rain Forest
1.1 Why the Study Was Done
1.2 The Model
1.3 Model Validation
References
Appendix 2: Ecosystem Boundaries
2.1 Ecosystem Boundaries
2.2 Cultural Boundaries
References
Appendix 3: How to Study Something when You Are Standing in the Middle of It
3.1 The Need for a Macroscope
3.2 What Should Be Measured?
3.2.1 Why Ecosystem Models Can’t Include Everyone’s Favorite Species
3.3 How Accurately Should Each Parameter Be Measured?
3.3.1 How Much Time and Effort Must Be Given to Quantifying each Ecosystem Parameter When Time and Money Are Limited?
3.3.2 The Answer
3.4 The Tyranny of Small Decisions
References
Appendix 4: Problems of Industrial Agriculture
4.1 Ecological Problems
4.2 Economic, and Social Problems
References
Appendix 5: Thermodynamic Niches
5.1 Energetic Niches in Forests
5.2 Macroecology
5.3 Energetic Niches on the Farm
References
Appendix 6: The Keystone Concept
References
Appendix 7: The Maximum Power Principle
Reference
Appendix 8: Gaia
References
Appendix 9: Thermodynamic Principles in Ecosystem Studies
Reference
Appendix 10: Facts in Ecology
Reference
Appendix 11: Site Information and Calculations Used for Data in Table 23.2 of Chap. 23
11.1 Decomposition Constant
11.2 Site Descriptions
11.2.1 The Amazon Region of Venezuela (Uhl and Murphy 1981)
11.2.1.1 Calculation of Energy Used to Release Nutrients Bound in Biomass
11.2.2 The Central Highlands of New Guinea (Rappaport 1971)
11.2.3 Experimental Comparison of No-till and Conventional Agriculture in Michigan (Snapp et al. 2015)
11.2.4 Experimental Comparison of Organic and Conventional Agriculture at Rodale Farms in Pennsylvania (Pimentel et al. 2005)
11.2.5 Conventional Agriculture in Iowa (Cox et al. 2011)
11.2.6 Conventional Agriculture in Georgia (Lee 2019)
11.3 Comparisons by Row
11.4 Summary
References