Environmental Microbiology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This textbook addresses global and local environmental problems and the involvement of microorganisms in their development and remediation. In particular, methodological aspects, some of them molecular genetic, for the study of microbial communities are considered. Overall, the prominent role of microorganisms in various material cycles is presented. In addition to biochemical principles for the degradation of environmental pollutants, the use of microorganisms in environmental biotechnological processes for the purification of air, water or soil as well as in environmentally friendly production processes is discussed. The book is intended for biologists with an interest in environmental microbiological issues, but also for students of process or environmental engineering, geoecology or geology, as well as students of other environmental science disciplines. For the 3rd edition, the authors have completely revised, corrected, updated and supplemented the book.

Author(s): Walter Reineke, Michael Schlömann
Edition: 3
Publisher: Springer Spektrum
Year: 2023

Language: English
Pages: 610
City: Berlin

Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Spellings and Abbreviations
Contents
1: Global Environment: Climate and Microorganisms
1.1 Climate System
1.1.1 Components of the Climate System
1.1.2 Interactions Between the Components
1.1.3 Energy Balance of the Earth
1.1.4 Climate Change and Its Effects
1.1.5 Which Substances Have Which Effect on the Climate?
1.1.6 Projections
1.2 Global Cycles with Reservoirs and Material Flows
1.2.1 Global Carbon Cycle
1.2.2 Global Nitrogen Cycle
1.2.3 Global Sulfur Cycle
1.2.4 Global Phosphorus Cycle
1.2.5 Summary of Global Cycles
References
Further Reading
2: Microorganisms, Actors in the Environment
2.1 Microorganisms, Assignment to Groups
2.2 Microorganisms, the Advantage of Small Size
2.3 Microorganisms, Small But Numerous
2.4 Microorganisms, Do Not Live Alone
References
Further Reading
3: Relationship Between Microbial Energy Production and Material Cycles
3.1 Principles of Energy Production
3.1.1 Respiratory Chains and ATP Synthase
3.2 Main Types of Microbial Metabolism
3.2.1 Phototrophy
3.2.2 Chemotrophy
3.2.2.1 Chemotrophy: Electron Donor
3.2.2.2 Chemotrophy: Electron Acceptor
3.2.3 Carbon Source: Heterotrophy and Autotrophy
Further Reading
4: Carbon Cycle
4.1 Formation of the Earth’s Atmosphere and Fossil Raw Materials
4.2 Material Flows in the Carbon Cycle
4.3 Autotrophic CO2-Fixation
4.3.1 Calvin Cycle
4.3.2 Reductive Citrate Cycle
4.3.3 Reductive Acetyl-CoA Pathway (Acetogenesis)
4.3.4 CO2-Fixation Cycle in Crenarchaeota
4.3.4.1 Dicarboxylate/4-Hydroxybutyrate Cycle
4.3.4.2 3-Hydroxypropionate/4-Hydroxybutyrate Cycle
4.3.5 3-Hydroxypropionate Bi-cycle
4.3.6 Comparison of the CO2-Fixation Processes
4.4 Degradation of Natural Substances
4.4.1 Degradation of Carbohydrates
4.4.1.1 Glycolysis
4.4.1.2 Oxidative Pyruvate Decarboxylation and Tricarboxylic Acid Cycle
4.4.1.3 Balance of Aerobic Respiration and Energy Storage
4.4.1.4 Anaerobic Degradation of Carbohydrates
4.4.2 Degradation of Proteins
4.4.3 Degradation of Fats
4.4.4 Degradation of Plant Substances/Lignin and Other Natural Substances/Humus Formation
4.4.4.1 Degradation of Starch
4.4.4.2 Degradation of Cellulose
4.4.4.3 Degradation of Xylan (Hemicellulose)
4.4.4.4 Degradation of Pectin
4.4.4.5 Degradation of Lignin
4.4.4.6 Humification
4.5 Methane Cycle/Methanogenic Food Chain/Methanotrophy
4.5.1 Methane Formation
4.5.2 Methane Degradation
4.5.2.1 Aerobic Degradation (Methylotrophy)
4.5.2.2 Anaerobic Degradation of Methane
References
Further Reading
5: Environmental Chemicals
5.1 Chemicals in the Environment: Distribution and Concentration
5.1.1 Transport Processes
5.1.1.1 Transport in the Water Body
5.1.1.2 Atmospheric Transport
5.1.2 Transfer Processes Between Environmental Media or Compartments
5.1.2.1 Volatilisation: Transport from Water and Soil to Air
5.1.2.2 Adsorption on Solids: Distribution Between Water and Particles
5.1.2.3 Distribution Between Water and Biota: n-Octanol/Water Partition Coefficient
5.1.3 Transformation Processes
5.1.3.1 Abiotic Transformations
5.1.3.2 Biotic Transformations
5.2 Assessment of Chemicals: General Principles and Concepts
5.2.1 Degradability Tests
5.2.1.1 Methods for Tracking Substance Turnover
5.2.1.2 OECD Testing Strategy
5.2.1.3 Simulation Tests
5.2.1.3.1 Tests for “Possible Degradability”
5.2.1.3.2 Screening Tests for Anaerobic Degradability
5.2.2 Toxicity and Mutagenicity Testing with Microbial Systems
5.2.2.1 Toxicity Tests for Aquatic Ecosystems
5.2.2.1.1 Algae Test
5.2.2.1.2 Pseudomonas putida Growth Inhibition Test
5.2.2.1.3 Luminescent Bacteria Test
5.2.2.1.4 Nitrification Inhibition Test
5.2.3 Mutagenicity Testing with Bacterial Systems
5.2.3.1 Ames Test (OECD 471, DIN 38415-4)
5.2.3.2 Umu Test (DIN 38415-3)
References
Further Reading
6: Microbial Degradation of Pollutants
6.1 Degradation of Hydrocarbons
6.1.1 Petroleum: Composition and Properties
6.1.2 The Process of Oiling in the Sea
6.1.3 Degradation of Alkanes, Alkenes and Cyclic Alkanes
6.1.3.1 Alkanes/Alkenes
6.1.3.2 Cycloalkanes
6.1.4 Degradation of Monoaromatic Hydrocarbons
6.1.4.1 Aerobic Aromatics Degradation
6.1.4.2 Anaerobic Aromatics Degradation
6.1.4.2.1 Formation of the Central Key Intermediates
6.1.4.2.1.1 Formation of Benzoyl-CoA
6.1.4.2.1.2 Formation of 1,3-Diphenols
6.1.4.2.2 Dearomatisation Reactions
6.1.4.2.2.1 Degradation of Benzoyl-CoA
6.1.4.2.2.2 Degradation of Resorcinol, Phloroglucin and Hydroxyhydroquinone
6.1.4.2.2.3 Hypothesis: Anaerobic Degradation of Naked Aromatic Compounds
6.1.4.3 Strategies of an Unorthodox Aerobic Degradation of Aromatics
6.1.4.3.1 Hybrid Pathway for Benzoate
6.1.4.3.2 Hybrid Pathway for Phenylacetate
6.1.4.3.3 Are the Hybrid Degradation Pathways Significant?
6.1.5 Degradation and Humification of Polynuclear Hydrocarbons
6.1.5.1 Bacterial Aerobic Degradation of PAHs
6.1.5.2 Degradation of PAHs by Fungi
6.1.5.3 Bacterial Anaerobic Degradation of PAHs
6.1.6 Degradation of Heterocycles
6.1.6.1 Sulfur-Containing Heterocycles
6.1.6.2 Nitrogen-Containing Heterocycles
6.1.6.3 Oxygenated Heterocycles
6.1.7 Formation of Biosurfactants/Absorption of Mineral Oil Hydrocarbons
6.1.7.1 Surface-Active Substances (Biosurfactants)
6.1.7.1.1 Structure of Biosurfactants
6.1.7.2 Sequence of Colonisation of an Oil Droplet
6.1.7.3 Use of Biosurfactants
6.2 Degradation of Chlorinated Pollutants
6.2.1 Degradation of Chlorinated Aromatics
6.2.1.1 Chlorinated Aromatics as an Environmental Problem
6.2.1.1.1 Production and Use
6.2.1.1.2 Physico-Chemical Properties and Evidence
6.2.1.2 Possibilities of Microbial Degradation of Chlorinated Aromatics
6.2.1.2.1 Cometabolic Degradation
6.2.1.2.1.1 Cometabolic Conversions by Aerobic Bacteria After Growth on Aromatics
6.2.1.2.1.2 Cometabolic Degradation by Ligninolytic Fungi
6.2.1.2.1.3 Cometabolic Dechlorination by Anaerobic Bacterial Populations
6.2.1.2.2 Chlorinated Aromatic Compounds Beneficial to Microorganisms
6.2.1.2.2.1 Dehalorespiration, an Anaerobic Respiration
6.2.1.2.2.2 Chloroaromatics as Carbon and Energy Source of Aerobic Bacteria
6.2.2 Degradation of Hexachlorocyclohexane
6.2.3 Degradation of Triazines
6.2.4 Degradation of Chloroaliphatic Compounds
6.2.4.1 Environmental Problem Using the Example of Volatile Halogenated Organic Compounds
6.2.4.2 Possibilities of Microbial Degradation of Chloroaliphatic Compounds
6.2.4.2.1 Aerobic Growth with Chloroaliphates
6.2.4.2.2 Cometabolic Degradation
6.2.4.2.3 Chloroaliphates Beneficial to Anaerobic Microorganisms
6.2.5 Organohalogens from Nature/Natural Sources
6.3 Degradation and Humification of Nitroaromatics
6.3.1 Environmental Problem Caused by Nitroaromatics
6.3.2 Possibility of Microbial Degradation of Nitroaromatics
6.3.3 Elimination of Trinitrotoluene by Sequestration on Soil
6.4 Degradation of Aromatic Sulfonic Acids and Azo Dyes
6.4.1 Aromatic Sulfonic Acids
6.4.1.1 Use and Environmental Relevance
6.4.1.2 Degradation of Aromatic Sulfonic Acids
6.4.2 Degradation of Azo Dyes
6.5 Plastics, Bioplastics
6.5.1 Degradability of Plastics
6.5.2 Bioplastics
6.5.2.1 Biopol: A Degradable Thermoplastic Resin
6.5.2.2 Degradable Plastics: Not Only from Renewable Raw Materials
6.5.3 An Assessment of the Environmental Impact of Plastics and Bioplastics
6.6 Complexing Agents: Aminopolycarboxylic Acids
6.7 Endocrine Active Compounds
6.7.1 Tributyltin Compounds
6.7.2 Alkylphenols
6.7.3 Bisphenol A
6.8 Methyl Tert-Butyl Ether
6.9 Glyphosate
References
Further Reading
7: The Microbial Nitrogen Cycle
7.1 Nitrogen Fixation
7.2 Ammonification
7.3 Nitrification
7.4 ANAMMOX
7.5 Nitrate Reduction
7.5.1 Denitrification
7.5.2 Dissimilatory Nitrate Reduction to Ammonium
References
Further Reading
8: Cycles of Sulfur, Iron and Manganese
8.1 Sulfur Cycle
8.1.1 Sulfate Reduction
8.1.2 Reduction of Elemental Sulfur
8.1.3 Sulfur Disproportionation
8.1.4 Oxidation of Sulfide and Elemental Sulfur
8.1.5 Organic Sulfur Compounds
8.2 The Iron Cycle
8.2.1 Oxidation of Divalent Iron
8.2.1.1 Oxidative Leaching of Pyrite and Other Sulfides at Low pH
8.2.2 Reduction of Trivalent Iron
8.3 The Manganese Cycle
8.3.1 Oxidation of Divalent Manganese
8.3.2 Reduction of Tetravalent Manganese (Mn4+): Anaerobic Respiration
References
Further Reading
9: Heavy Metals and Other Toxic Inorganic Ions
9.1 Toxicity
9.2 Environmental Quality Standards
9.3 Natural and Anthropogenic Occurrences
9.4 Resistance of Microorganisms
9.5 Mercury
9.6 Arsenic
9.6.1 Arsenite Oxidation
9.6.2 Arsenate Reduction
9.6.3 Arsenate Methylation
9.7 Selenium
9.8 Uranium
References
Further Reading
10: Microorganisms at Different Sites: Living Conditions and Adaptation Strategies
10.1 Microbial Competition and Cooperation
10.1.1 Growth Rates and Nutrient Concentrations
10.1.2 Adaptation
10.1.2.1 Adaptation to the Presence of High Salt Concentration
10.1.2.2 Adaptation to the Presence of Solvents
10.1.3 Mixed Substrates
10.1.4 Limit Concentrations
10.1.5 Microbial Cooperation
10.2 Attachment to Surfaces and Biofilms
10.2.1 Surfaces
10.2.2 Biofilms
10.3 Soil as Microbial Habitat
10.4 Aquatic Biotopes
10.4.1 Freshwater Environment
10.4.1.1 The Free Water
10.4.1.2 The Sediment
10.4.2 Marine Environments
10.4.2.1 Coastal and Intertidal Areas
10.4.2.2 The Pelagic Zone
10.4.2.2.1 Epipelagic Zone/Euphotic Zone
10.4.2.2.2 The Deep Sea
10.4.2.2.2.1 Meso- and Bathypelagic Zones
10.4.2.2.2.2 Oxygen Minimum Zones and Oxic-Anoxic Interfaces
10.4.2.2.2.3 Hydrothermal Vents of the Deep Sea
10.4.2.2.2.4 Cold Gas Leaks/Cold Seeps
10.4.2.2.2.5 Sediment
10.4.2.2.2.6 Mountain Sides
References
Further Reading
11: Microbial Communities: Structural and Functional Analyses with Classical Approach
11.1 Summary Methods
11.1.1 Determination of Bacterial Counts and Biomasses
11.1.2 Determination of Activities
11.2 Detection of Certain Microorganisms
11.3 Microorganisms, from Nature to the Laboratory, the Isolation of Pure Cultures
11.3.1 Organisms That Cannot Be Cultivated?
11.3.2 Isolation and Problems
11.3.3 Enrichment System
11.3.4 Analogue Enrichment: Sense or Nonsense?
11.3.5 Inoculum for Enrichment Culture
References
Further Reading
12: Microbial Communities: Structural and Functional Analyses with Molecular Biological Approach
12.1 Basic Molecular Genetic Methods for Classification and Identification of Pure Cultures
12.2 Molecular Genetic Methods for Community Characterization
12.3 Metagenomics
12.3.1 Community of an Acid Mine Drainage System
12.3.2 Community of the Sargasso Sea
12.3.3 The Global Ocean Sampling Expedition
12.3.4 Sequence Data and Functionality: A Critical View
References
Further Reading
13: Damage to Inorganic Materials Due to Microbial Activities, Biocorrosion
13.1 Iron Corrosion
13.2 Concrete Corrosion
13.3 Building Corrosion/Damage to Stone
Reference
Further Reading
14: Biological Waste Water Treatment
14.1 Formation and Composition of Waste Water
14.2 Waste Water Treatment in Mechanical-Biological Treatment Plants with Aerobic Stage
14.3 Biological Phosphate Elimination
14.4 Nitrogen Elimination During Waste Water Treatment
14.5 Anaerobic Sludge Treatment, Direct Anaerobic Wastewater Treatment and Biogas Production
14.6 Treatment of Industrial Waste Water
14.7 Near-Natural Wastewater Treatment Processes
References
Further Reading
15: Biological Exhaust Air Treatment
15.1 Problems with Exhaust Air Flows
15.2 Microbial Exhaust Air Purification, General Principles
15.3 Exhaust Air Purification Systems: Biofilter
15.4 Exhaust Air Purification Systems: Bioscrubbers
15.5 Exhaust Air Purification Systems: Trickling Filter Scrubbers
15.6 Exhaust Air Purification Systems: Membrane Reactors
15.7 Selection Criteria for Procedure Selection
References
Further Reading
Technical Rules
16: Biological Soil Remediation
16.1 Contaminated Site Issues
16.2 Methods of Biological Soil Remediation
16.2.1 Ex Situ Procedure
16.2.1.1 Rental Technique
16.2.1.2 Landfarming
16.2.1.3 Reactor Process
16.2.2 In Situ Soil Remediation
16.2.2.1 Phytoremediation
16.2.2.2 Infiltration Method (“Pump and Treat” Technology)
16.2.2.3 Aeration Process
Further Reading
17: Biological Waste Treatment
17.1 Waste Issues
17.2 Biological Waste Treatment Processes
17.2.1 The Composting Process
17.2.2 Composting Processes
17.2.3 Anaerobic Waste Treatment by Digestion
References
Further Reading
18: Biotechnology and Environmental Protection
18.1 Biological Pest Control
18.1.1 Bioinsecticides
18.1.1.1 Bacillus thuringiensis and B. sphaericus
18.1.1.2 Bioinsecticides from Actinomycetes
18.1.1.3 Mushroom Preparations
18.1.1.4 Virus Preparations
18.1.2 Biofungicides and Herbicides
18.2 Design of New Chemicals
18.2.1 Structure-Activity Relationship/Predictability of Degradation
18.2.2 Degradable Alternatives to Current Chemicals
18.3 Product-Integrated Environmental Protection Through Biotechnology
18.3.1 Process Comparison: Biotechnical and Chemical-Technical Processes
18.3.1.1 Biotechnological and Chemical-Technical Production of Vitamin B2
18.3.1.2 Biotechnological and Chemical-Technical Production of Leather
18.3.2 Environmental Relief Effects Through Product Substitution
18.3.2.1 Product Comparison: Enzyme Use in Heavy-Duty Detergents
18.3.3 Summary PIUS
18.4 Biofuels
18.4.1 Bioethanol
18.4.2 Biodiesel
18.4.3 Biomass-to-Liquid Fuel
18.5 Electricity from Microorganisms
18.5.1 Hydrogen Production in Bioreactors for Conventional Fuel Cells
18.5.2 Microbial Production of Fuel in the Anode Compartment of the Fuel Cell
18.5.3 Direct Electron Transport from the Cell to the Electrode
18.5.4 Mediators for Electron Transport
References
Further Reading
19: Food for Thought
19.1 Sustainability, the Concept
19.2 Sustainability, Environmental Microbiology a Contribution
19.3 Environment and Environmental Microbiology, Reflection
References
Further Reading