Engineering Pedagogy: A Collection of Articles in Honor of Prof. Amitabha Ghosh

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book contains selected papers from the symposium on Engineering Pedagogy organised in honour of Professor Amitabha Ghosh and his Lecture Series on Evolution of Classical Mechanics. It covers evolution of mechanics from ancient times to modern days and good pedagogical practices among engineering and science faculty. The content includes chapters on challenges in engineering education, intellectual property rights, professional ethics, manufacturing education, additive manufacturing in engineering curricula, among others. The volume necessitates an efficient and effective pedagogical approach from engineering educators. This book will be of interest to those in teaching across all disciplines of engineering.

Author(s): Uday Shanker Dixit, Raghu Echempati, Sudip Dey
Publisher: Springer
Year: 2023

Language: English
Pages: 257
City: Singapore

Foreword by Patron of the Symposium on Engineering Pedagogy Held on March 20, 2022
Preface
About Prof. Amitabha Ghosh
Contents
About the Editors
Untitled
1 Distinguishing Features of Engineering Pedagogy
1.1 Introduction
1.2 Challenges in Imparting Technical Education
1.3 Improving the Effectiveness of Lectures
1.4 Importance of Tutorials in Undergraduate Education
1.5 Teaching in a Laboratory
1.6 Importance of Toys and Models
1.7 Preparing a Good Question Paper
1.8 Issues of Intellectual Property Rights
1.9 Supervising a Project
1.10 Teaching of Professional Ethics
1.11 Conclusion
References
2 Pedagogical Teaching—Teachers’ Beliefs, Capabilities, and Examples
2.1 Introduction
2.2 Teaching Pedagogy
2.2.1 Cooperative Training/education [11–13]
2.2.2 “Toys in the Loop” [14–17]
2.2.3 ‘De-rusting’ or Reviewing the Perquisites Knowledge [18, 19]
2.2.4 “Everyday Engineering Examples (E3s)” [20, 21]
2.3 Conclusions
Appendix
References
3 Growth Mindset in Engineering Pedagogy for Attitude Building with Metacognition of Engineering Students
3.1 Introduction
3.2 Growth Mindset Pedagogical Framework: A Vision for Engineering Pedagogy
3.3 Conclusion
References
4 A Combination of Innovative Pedagogical Theories to Enhance the Learning Output—A Case Study with Engineering Students
4.1 Introduction
4.2 Initial Conditions
4.3 Design of Course Content
4.4 Evaluation and Assessment Strategy
4.5 Delivering the Lecture
4.6 Experiments with Examination Patterns
4.7 Reward Policy for Student Motivation
4.8 Gross Outcome of Adopted Pedagogy
4.9 Conclusions
References
5 Effective Online Teaching and Evaluation Methods
5.1 Introduction
5.2 Online Teaching
5.3 Grading
5.3.1 Assignments
5.3.2 Online Examination
5.4 Conclusion
References
6 Internet-Based Learning and Teaching of a Subject by Self-prepared Notebook
6.1 Introduction
6.2 Methodology
6.2.1 Numerical Approaches for Solid Mechanics
6.3 Discussion of IbLT
6.4 Conclusions
References
7 Computational Demonstration for Classroom Teaching of Classical Mechanics
7.1 Introduction
7.2 Problem Definition
7.3 Free Vibration Analysis
7.3.1 Numerical Solution of Ordinary Differential Equation (ODE)
7.3.2 Modal Approach
7.4 Forced Harmonic Vibration
7.4.1 Solution in Physical Coordinates
7.4.2 Solution in Modal Coordinates
7.5 Conclusion
References
8 Ethics in Publishing
8.1 Introduction
8.2 Some Information About Intellectual Property Rights
8.3 Copyright Laws
8.4 Obtaining Permissions for Materials from Other Sources
8.5 When is the Copyright Permission not Needed?
8.6 Issues of Authorship
8.7 Self-plagiarism
8.8 Similarity Checking
8.9 Conclusion
References
9 Innovation and Intellectual Property Rights in Engineering Curriculum: A Pedagogy for Higher Educational Institutes
9.1 Introduction
9.2 Background
9.2.1 Innovations and IPRs
9.3 Problem Formulation
9.3.1 IPR in the Curriculum
9.4 Research Methodology
9.4.1 Course Objectives
9.4.2 Course Outcomes
9.4.3 Contents of the Syllabus
9.4.4 Teaching Methodology
9.5 Discussions
9.6 Conclusion
References
10 A Pedagogical Gadget for Teaching Heat Transfer
10.1 Introduction
10.2 Pedagogical Gadget and Possible Experiments
10.2.1 Newton’s Law of Cooling
10.2.2 Concept of Specific Heat Capacity
10.2.3 Insulation Effect
10.2.4 Absorptivity of Black Color
10.2.5 Change in Diffusion with Temperature
10.3 Survey and Feedback on Pedagogical Gadget
10.3.1 Response to Statement 1
10.3.2 Response to Statement 2
10.3.3 Response to Statement 3 and 4
10.3.4 Response to Statement 5 and Questions 6 and 7
10.3.5 Response of Teachers to MCQ
10.4 Educational Assessment Based on Test
10.5 Conclusion
References
11 Uncertainty Quantification—An Eternal Future of Engineering and Technology
11.1 Introduction
11.2 Uncertainty Quantification in Different Engineering Domains
11.3 Uncertainty in Few Physical Phenomena
11.3.1 Uncertainty in Number System
11.3.2 Uncertain Space–Time Domain
11.4 Design of UQ Course Work
11.4.1 Sampling Techniques
11.4.2 Surrogate Models Construction and Validation
11.4.3 Uncertainty Analysis
11.4.4 Uncertainty Optimization
11.5 Importance of UQ Course for Engineering Undergraduates
11.6 Conclusions
References
12 Introducing the Basic Quantities of Mechanics
12.1 Introduction
12.2 Elementary and composite quantities
12.3 Some simple experiments
12.4 Conclusion
13 Practicing Hydraulic Autofrettage for Strengthening a Gun Barrel: Critical Issues and Challenges
13.1 Introduction
13.2 Mechanics of Hydraulic Autofrettage
13.2.1 Initiation of Yielding
13.2.2 Elastic–plastic Stress Analysis During Pressurization
13.3 The Process of Hydraulic Autofrettage of a Barrel
13.4 Critical Issues in Hydraulic Autofrettage
13.4.1 Selection of Autofrettage Fluid
13.4.2 Preparation of Mandrel and Sealing System
13.4.3 Bore Surface Preparation for Sealing System
13.4.4 Application of Autofrettage Pressure/Test Pressure
13.4.5 Low-Temperature Treatment
13.4.6 Measurement of Pressure Exterior Expansion
13.5 Abnormalities and Causes of Failure
13.6 Dos and Don’ts During the Process of Hydraulic Autofrettage
13.7 Conclusions
References
14 Biointerface Phenomena in Biological Science and Bioengineering: Importance of Engineering Courses
14.1 Introduction
14.2 Thermodynamics of Biointerfacial Aspects
14.3 Biointerfacial Phenomena in Biological Sciences
14.3.1 Molecular Self-Assembly
14.3.2 Formation of Micelles
14.3.3 Bilayers
14.3.4 Vesicles
14.3.5 Protein Folding
14.3.6 Protein Unfolding and Aggregation
14.4 Biointerfacial Phenomena in Bioengineering
14.4.1 Implant Biomaterials
14.4.2 Biosensors
14.4.3 Drug Delivery
14.4.4 Nanomedicine
14.4.5 Tissue Engineering
14.5 Conclusions
References
15 Contact of a Cylindrical Shell with a Flat Frictionless Rigid Substrate
15.1 Introduction
15.2 The Contact Problem
15.2.1 Analysis Using Cosserat Shell Theory
15.2.2 Analysis Using Shear Deformation Shell Theory
15.2.3 Analysis Using Flügge-Lur’e-Byrne Shell Theory
15.2.4 Finite Element Simulation
15.3 Results and Discussion
15.3.1 Comparison Between Displacements
15.3.2 Comparison Between Contact Pressure Distribution
15.3.3 Comparison Between Applied Load Versus Contact Patch Length Plots
15.4 Conclusion
15.5 Future Study
References
16 Kinematics of Mechanisms ain’t an Old Hat!
16.1 Genesis, Early Developments, and Conflicts Therein
16.1.1 Mechanisms
16.1.2 Kinematics
16.1.3 Kinematics, Mechanisms, and Machines
16.2 Pedagogy and Practice
16.2.1 Before Reuleaux
16.2.2 During Reuleaux
16.2.3 After Reuleaux
16.3 Expansion in the Twentieth Century and After
16.3.1 No New Elements!
16.3.2 Open Chains and Robotics
16.3.3 Compliant Mechanisms at Multiple Size Scales
16.4 What Does the Future Hold?
16.4.1 Look Back to Look Forward
16.4.2 Animal as a Machine and Vital Mechanisms
16.4.3 Future Pedagogy in Kinematics and Mechanisms
16.5 Closure
References