Energy Harvesting and Storage: Fundamentals and Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book covers recent technologies developed for energy harvesting as well as energy storage applications. The book includes the fabrication of optoelectronic devices such as high-efficiency c-Si solar cells, carrier selective c-Si solar cells, quantum dot, and dye-sensitized solar cells, perovskite solar cells, Li-ion batteries, and supercapacitors. Aiming at beginners in the respective areas, the basic principles and mechanism of the optoelectronic phenomena behind every application are detailed in the book. The book offers schematics, tables, graphical representations, and illustrations to enable better understanding. Among the nine chapters, the first four chapters are dedicated to various types of high-efficiency solar cells and the remaining chapters discuss the methods for energy storage such as the fabrication of batteries and supercapacitors. The book is a useful reference for active researchers and academicians working in energy harvesting and energy storage areas.

Author(s): M. K. Jayaraj, Aldrin Antony, P. P. Subha
Series: Energy Systems in Electrical Engineering
Publisher: Springer
Year: 2022

Language: English
Pages: 331
City: Singapore

Preface
Acknowledgements
Contents
Solar Cell Technologies: An Overview
1 Global Energy Demands
2 General Picture of a Solar Cell
2.1 Crystalline Silicon Solar Cell
2.2 Design Rule of a Solar Cell
3 Evolution of Silicon Solar Cells
3.1 Industrial Al-BSF Solar Cell
3.2 Passivated Emitter Solar Cells (PESC) and Laser Grooved Buried Contact (LGBC) Solar Cells
3.3 Point Contact Solar Cells
3.4 Passivated Emitter and Rear Contact (PERC) Solar Cell Family
3.5 Tunnel Oxide Passivated Contacts (TOPCon)
3.6 Interdigitated Back Contact (IBC) Solar Cell
3.7 Silicon Heterojunction Solar Cells
3.8 Polycrystalline Silicon on Oxide (POLO) Solar Cells
3.9 Bifacial Solar Cells
4 Thin Film Solar Cells
4.1 Amorphous Silicon Solar Cells
4.2 Cadmium Telluride (CdTe) Solar Cells
4.3 CIGS Solar Cell
5 Emerging Photovoltaics
5.1 Organic Solar Cells
5.2 Perovskite Solar Cells
6 Solar Cell Applications
7 Photovoltaics: Industrial Status
8 Summary
References
Physics and Technology of Carrier Selective Contact Based Heterojunction Silicon Solar Cells
1 Conceptual Solar Cell: Light Absorber Plus Two Selective Contacts
1.1 Solar Cell Characteristics
1.2 Why Electrons Flow?
1.3 Ideal Solar Cell: Light Absorber Plus Two Selective Contacts
1.4 Making Selective Contacts
1.5 Determining the Current–Voltage Characteristic of a Solar Cell
2 Selective Contacts and Practical Applications to Photovoltaics
2.1 Thin Film Carrier Selective Contacts, Hole and Electron Transport Layers
2.2 Hole-Selective Contacts for Silicon-Based Solar Cells
2.3 Electron-Selective Contacts for Silicon-Based Solar Cells
3 Carrier Selective Contacts Based on Dipoles
3.1 Dipolar Interfaces for Enhanced Charge Carrier Selectivity
3.2 Novel Materials as Carrier Selective Contacts
4 Summary
References
Perovskite Solar Cells: Concepts and Prospects
1 Introduction to Metal–Organic Perovskites
1.1 Crystal Structure
1.2 Methylammonium Lead Iodide
1.3 Mixed Halides and Mixed Cation Perovskites
2 Properties of Perovskites
2.1 Optical Properties
2.2 Electrical Properties
3 3D and Low Dimensional Structures
4 Perovskite Sensitized Solar Cells Using Liquid Electrolyte
4.1 Operating Principle
5 Perovskite Quantum Dot Sensitized Solar Cells 
6 All-Solid-State Perovskite Sensitized Heterojunction Solar Cells
7 Meso-Super Structured Solar Cells (MSSC)
8 Planar Heterojunction Perovskite Solar Cells
9 Materials for Electron Transport and Hole Transport Layers
9.1 Carbon-Based Interlayers to Improve Charge Extraction and Transport
9.2 Single Crystal Perovskite Solar Cells
9.3 Back Contact Perovskite Solar Cells
10 High-Efficiency Concepts: Tandem Solar Cells
10.1 Introduction to Tandem Solar Cells
10.2 Perovskite-Si TSC
10.3 Perovskite-CIGS TSC
10.4 Perovskite-Perovskite TSC (Flexible—Lightweight)
10.5 Critical Issues Regarding Perovskite Tandem Solar Cells and Remedies
11 Challenges in Commercializing Perovskite Solar Cells
11.1 Toxicity of Lead
11.2 Lack of Stability
11.3 Scalability Issues
11.4 Current–Voltage Hysteresis
11.5 Lead-Free Perovskites for Photovoltaics
11.6 Tin Based Perovskites
11.7 Germanium Based Perovskites
11.8 Other Lead-Free Perovskites
11.9 Protection Methods for Perovskite Solar Cells
12 Techniques for Large Area Perovskite Solar Cells
12.1 Current Status of Perovskite Solar Cells
12.2 Other Applications of Perovskites
13 Summary
References
Radiation Hardness, a New Characterization Technique and Bistability Regarding Methylammonium Containing Perovskite Solar Cells
1 Introduction
2 Perovskite Solar Cell Radiation Hardness Investigation
2.1 Solar Cell Preparation and Characterization
2.2 Influence of Proton Irradiation on the Solar Cell Characteristics and Parameters
3 Low Frequency Noise Spectroscopy as Perovskite Solar Cell Characterization Tool
4 Perovskite Solar Cell Based Highly Reproducible Electronic Switching Device
5 Summary
References
Tackling the Challenges in High Capacity Silicon Anodes for Li-Ion Cells
1 Introduction
1.1 Energy: A Burning Issue
1.2 Electrochemical Energy Resources
1.3 Batteries—A Brief Overview
1.4 Primary and Secondary Batteries
1.5 New Era of Rechargeable Batteries
2 Lithium Batteries—A Brief History
2.1 Common Terminologies
2.2 Comparison of Batteries with Other Energy Storage Systems
3 Li-Ion Cell: Structure and Components
3.1 Electrolytes
3.2 Electrodes
3.3 Different Types of Cathode Materials
4 Different Types of Anode Materials
4.1 Intercalation Type Anode Materials
4.2 Conversion Type Anode Materials
4.3 Alloying Type Anode Materials
5 Silicon Anode
5.1 Advantages
5.2 Challenges in Si Anode
6 Development in Silicon-Based Anode Materials
6.1 Si Thin Films and Si Nanostructured Materials
7 Si Composite Materials
7.1 Nano/Micro Dimensional Si Particles Embedded in a Network
7.2 Core–Shell Structured Si Composites
8 Current Trends in Silicon-Based Composites and Hybrid Materials
9 Summary
References
The Renaissance of High-Capacity Cathode Materials for Lithium Ion Cells
1 Introduction
2 Requirements of Cathode Materials for Li-Ion Cells
3 Conventional Cathode Materials for Li-Ion Cells
3.1 Layered Transition Metal Oxide Cathodes
3.2 Spinel Transition Metal Oxide Cathodes
3.3 Olivine Cathode Materials
4 Lithium Rich Cathode Materials
4.1 Li5FeO4
4.2 Li6CoO4
4.3 Lithium Manganese Oxides
4.4 Integrated Li and Mn Rich Layered Oxides
4.5 Li2RuO3
4.6 Li2SnO3
5 Summary
References
Lithium-Ion Pouch Cells: An Overview
1 Introduction
2 Method of Manufacturing of Lithium-Ion Pouch Cell
3 Heat Sealing of Pouch Cell Pack
4 Thermal Management in Pouch Cell
5 Failure Mode of Pouch Cell
6 Trend and Opportunities of Pouch Cell
7 Summary
References
An Overview of Polymer Based Electrolytes for Li-Ion Battery Applications
1 Introduction
2 Electrolyte Properties
2.1 Conventional Non-Aqueous Liquid Electrolytes
2.2 Characteristics of High Voltage Electrode–Electrolyte Interface
3 Solid Polymer Electrolytes (SPEs): Components and Ion Transport Studies
3.1 Components of SPEs
3.2 Ionic Transport Mechanism in SPE
3.3 Polyethylene Oxide (PEO) Based and Non PEO Based Electrolytes
4 Gel Polymer Electrolytes (GPEs)
4.1 Constituents of GPEs
4.2 Ionic Conduction in GPES
4.3 Characteristics of GPEs
5 Summary
References
Carbon Based Composites for Supercapacitor Applications
1 Introduction
2 Classification of Supercapacitors
2.1 EDLC Supercapacitors
2.2 Pseudo-Capacitors
2.3 Hybrid Capacitors
3 Different Techniques for the Evaluation of Supercapacitors
3.1 Cyclic Voltammetry
3.2 Galvanostatic Charge Discharge (GCD)
3.3 Electrochemical Impedance Spectroscopy (EIS)
4 Supercapacitor Parameters
4.1 Energy Density and Power Density
4.2 Coulombic Efficiency
5 Stability of the Electrode Materials
6 Critical Factors Affecting the Performance of Supercapacitors
7 Carbon Materials for Supercapacitor Electrodes
8 Limitations of Carbon Materials Based Supercapacitors
9 Carbon Based Composites for Supercapacitors
10 Challenges of Supercapacitors
10.1 Self-Discharge Characteristics
11 Summary
References
Wearable Supercapacitors
1 Introduction
2 Electrode Material for Flexible Supercapacitors
3 Design of Flexible Supercapacitors
4 Supercapacitor Assembly Configurations
5 Applications
6 Summary and Outlook
References