Emerging Nanomaterials: Opportunities and Challenges in Forestry Sectors

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Bio-based materials, including those containing wood, will become increasingly important as we move to a bio-based economy. Among their many attributes, it is vitally important that these materials are renewable, sustainable with proper management and environmentally benign.  Wood remains one of our most important bio-based materials. While it is an amazing material, wood still has negative attributes and drawbacks that can affect performance, including dimensional instability when wetted, vulnerability to fire and high temperatures, and susceptibility to biodeterioration. A variety of treatments have been developed to overcome these weaknesses. Among the most exciting of these treatments are nanomaterials. These materials have some exceptionally attractive properties for improving timber performance and have been the subject of intensive research over the past decade. There is a tremendous need for a single comprehensive source of information on this rapidly emerging subject with tremendous potential to enhance the performance of a variety of bio-based materials. This book contains 10 chapters, each compiled by different author(s) who are considered the top researcher(s) in their respective fields. The chapters begin with some basic background on nanomaterials and their synthesis, then explore different areas for potential applications and conclude with a review of the emerging questions about nanomaterial safety. The book is designed to provide the latest information and know-how on application and utilization of different nanomaterials to improve the properties of wood and wood-based composite panels. The contents cover some main topics in the industry including improving physical and mechanical properties, increasing resistance to biodegradation (including fungi and insects), developing wood-plastic composites (WPC), applying nanomaterials in paper and board industry, and emergence of transparent wood and radiation shielding. It also covers the use of nanomaterials to improve the performance of paints and finishes used for forest products. The book provides a single location for those interested in the field to begin.

Author(s): Hamid R. Taghiyari, Jeffrey J. Morrell, Azamal Husen
Publisher: Springer
Year: 2022

Language: English
Pages: 368
City: Cham

Preface
Contents
About the Editors
Emerging Nanomaterials for Forestry and Associated Sectors: An Overview
1 Introduction
2 Biodegradability of Wood
3 Physical and Mechanical Properties
4 Wood Coatings
5 Fire Retardants
6 Smart Windows
7 Transparent Wood
8 Nanomaterials: Risk Assessment
9 Conclusion
References
Potential of Nanomaterials in Bio-Based Wood Adhesives: An Overview
1 Introduction
2 Nanocellulose Application in Bio-Based Wood Adhesives
3 Nanolignin Application in Bio-Based Wood Adhesives
4 Nanoclay Application in Bio-Based Wood Adhesives
5 Challenges and Future Prospects
6 Conclusion
References
Nanomaterials to Improve Fire Properties in Wood and Wood-Based Composite Panels
1 Introduction
2 Mineral Nanoparticles
3 Nano-Oxides
4 Carbon-Based Nanoparticles
5 Health Risks and Toxicity
6 Summary
References
Wood Plastic Composites (WPCs): Applications of Nanomaterials
1 Introduction
2 An Overview of Wood Plastic Composite Technology and the Latest Developments in Wood Plastic Composites
3 Nanomaterial Reinforcements Used in Wood Plastic Composites
3.1 The Effects of Nano-fillers on the Physical Properties and Durability of the WPCs
3.2 The Effects of Nano-fillers on the Mechanical Properties of the WPCs
3.3 The Effects of Nano-fillers on the Thermal Properties of the WPCs
4 Lignocellulosic Nanocomposite Materials
4.1 Lignocellulosic Materials
4.2 Cellulose-Based Nanomaterials (CNMs)
4.3 Lignin and Hemicellulose-Based Nanomaterials
4.4 Application Areas of Lignocellulosic Nanomaterials
4.5 Lignocellulosic Nanomaterials as Reinforcements in Composites
5 Conclusion
References
Nanomaterials to Improve Properties in Wood-Based Composite Panels
1 Introduction
2 Improvement of the Properties of Wood-Based Composite Panels by Nanomaterials
3 Conclusion
References
Nanomaterials to Improve the Strength of Wooden Joints
1 Introduction
2 Adhesives and Nanomaterials Used in Wood Joints
3 Adhesion Theory in Wood Joint and Its Implication in Adhesives Improve with Nanomaterials
4 Evaluation of Glue Line with the Adhesive Nanomodified Present in the Wood Joint
5 Evaluation for Glue Line with the Nanomodified Adhesive Present in the Wood Joint
6 Conclusions and Outlook
References
Application of Nanomaterials for Wood Protection
1 Introduction
2 Biocide Delivery System for Wood Protection
3 Metal-Based Nanoparticles for Wood Protection
4 Green Compounds and Nanominerals for Wood Protection
5 Wood Coatings
5.1 Durability Improvement Using Nanocoating
5.2 UV Absorption Using Nanocoating
6 Fire Resistance Improvement Using Nanomaterials
7 Conclusion
References
Nanocellulose in Paper and Board Coating
1 Introduction
2 Nanocellulose
2.1 Production Methods of Nanocellulose
2.1.1 Production of Cellulose Nanofibrils (CNFs)
2.1.1.1 Biological and Chemical Pretreatments
2.1.1.1.1 Enzymatic Hydrolysis
2.1.1.1.2 Carboxylation with TEMPO-Oxidation
2.1.1.1.3 Carboxylation with Periodate Chlorite Oxidation
2.1.1.1.4 Carboxymethylation
2.1.1.1.5 Quaternization
2.1.1.2 Mechanical Treatments
2.1.2 Production of Cellulose Nanocrystals (CNCs)
2.1.2.1 Mineral Acid Hydrolysis
2.1.2.2 Solid Acid Hydrolysis
2.1.2.3 Organic Acid Hydrolysis
2.1.2.4 Enzymatic Hydrolysis
2.1.2.5 Oxidation Degradation
2.1.2.6 Ionic Liquid Method
2.1.2.7 Other Methods
2.2 Characterization and Properties of Nanocellulose
2.2.1 Properties of Nanocelluloses as Suspension
2.2.1.1 Morphology of Nanocelluloses
2.2.1.2 Degree of Polymerization
2.2.1.3 Degree of Crystallinity
2.2.1.4 Surface Chemistry and Colloidal Stability
2.2.1.5 Rheological Properties
2.2.2 Properties of Nanocelluloses as Dry Form
2.2.2.1 Nanocelluloses as Powder
2.2.2.2 Nanocellulosic Films
2.2.2.2.1 Mechanical Properties of Nanocellulosic Films
2.2.2.2.2 Optical Properties of Nanocellulosic Films
2.2.2.2.3 Barrier Properties of Nanocellulosic Films
2.2.2.3 Nanocellulosic Hydrogels
2.2.2.4 Nanocellulosic Aerogels
2.2.2.5 Nanocellulosic Foams
2.2.2.5.1 Properties of Nanocellulosic Aerogels and Foams
Density and Porosity
Specific Surface Area
Pore Dimension and Morphology
Mechanical Properties
Thermal, Electrical, and Acoustic Properties
2.3 Surface Modification of Nanocelluloses
2.3.1 Esterification
2.3.2 Etherification
2.3.3 Amidation
2.3.4 Silylation
2.3.5 Urethanization
2.3.6 Sulfonation
2.3.7 TEMPO-Oxidation
2.3.8 Carboxymethylation
2.3.9 Phosphorylation
2.3.10 Grafting of Nanocellulose
2.3.10.1 Grafting Onto
2.3.10.2 Grafting From
2.3.10.2.1 Ring-Opening Polymerization (ROP)
2.3.10.2.2 Free Radical Polymerization (FRP)
2.3.10.2.3 Living Free Radical Polymerization (LFRP)
2.4 Effect of Nanocellulose in Paper and Board Coatings
2.4.1 Properties of Nanocellulose Coated Paper and Boards
2.4.1.1 Physical Properties
2.4.1.1.1 Thickness
2.4.1.1.2 Density
2.4.1.1.3 Bulk
2.4.1.1.4 Air Permeability
2.4.1.1.5 Smoothness
2.4.1.2 Mechanical Properties
2.4.1.2.1 Tensile Index
2.4.1.2.2 Tear Index
2.4.1.2.3 Burst Index
2.4.1.2.4 Internal Bond
2.4.1.2.5 Crush Tests (SCT, CMT, RCT, CCT)
2.4.1.3 Optical Properties
2.4.1.4 Barrier (Drainage) Properties
2.5 Effect of Nanocellulose in Paper and Board Production as an Additive
2.5.1 Properties of Nanocellulose Added Paper and Boards
2.5.1.1 Physical Properties
2.5.1.1.1 Thickness
2.5.1.1.2 Density
2.5.1.1.3 Bulk
2.5.1.1.4 Air Permeability and Smoothness
2.5.1.2 Mechanical Properties
2.5.1.2.1 Tensile Index
2.5.1.2.2 Tear Index
2.5.1.2.3 Burst Index
2.5.1.2.4 Internal Bond
2.5.1.2.5 Crush Tests (SCT, CMT, RCT, CCT)
Short Span Compression Test (SCT)
Concora Medium Test (CMT)
2.5.1.3 Optical Properties
2.5.1.3.1 Brightness
2.5.1.3.2 Opacity
2.5.1.4 Barrier (Drainage) Properties
2.6 Application Drawbacks of Nanocellulose in Paper and Board Production and Coating
References
Green Materials for Radiation Shielding: An Overview
1 Introduction
2 Green Materials
2.1 Lignocellulosic Biomaterials
2.1.1 Cellulose
2.1.2 Lignin
2.2 Lignin-Containing Nanocellulose
2.2.1 Starch
2.2.2 Chitosan
2.2.3 Natural Proteins
2.2.4 Synthetic Biopolymers
3 Radiation
3.1 Radiation Types
3.2 Interactions of Radiation with Matter
3.3 Important Parameters for Radiation Shielding
3.4 Conventional Radiation Shielding Materials
4 Green Materials for Radiation Shielding Applications
4.1 Green Materials for X-Rays, Gamma-Rays, and Neutrons Shielding Applications
4.2 Green Materials for Electromagnetic Interference Shielding Applications
5 Conclusion
References
Formaldehyde Emissions from Wood-Based Composites: Effects of Nanomaterials
1 Introduction
1.1 Formaldehyde Emissions from Wood-Based Composites
1.2 Reduction of Formaldehyde Emissions from Wood-Based Composites
2 The Use of Nanofillers for the Reduction of Formaldehyde Emissions from Wood-Based Composites
2.1 Silicon Dioxide (SiO2)
2.2 Titanium Dioxide (TiO2)
2.3 Halloysite
2.4 Aluminum Oxide (Al2O3)
2.5 Zinc Oxide (ZnO)
2.6 Clay Minerals (Bentonite, Montmorillonite)
2.7 Nanocellulose
2.8 Carbon Nanotubes
3 Conclusions: Future Work
References
Index