Electrospun Nanofibers: Principles, Technology and Novel Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents the development of electrospun materials, fundamental principles of electrospinning process, controlling parameters, electrospinning strategies, and electrospun nanofibrous structures with specific properties for applications in tissue engineering and regenerative medicine, textile, water treatment, sensor, and energy fields. This book can broadly be divided into three parts: the first comprises basic principles of electrospinning process, general requirements of electrospun materials and advancement in electrospinning technology, the second part describes the applications of electrospun materials in different fields and future prospects, while the third part describes applications that can be used in advanced manufacturing based on conjoining electrospinning and 3D printing. Electrospinning is the most successful process for producing functional nanofibers and nanofibrous membranes with superior chemical and physical properties. The unique properties of electrospun materials including high surface to volume ratio, flexibility, high mechanical strength, high porosity, and adjustable nanofiber and pore size distribution make them potential candidates in a wide range of applications in biomedical and engineering areas. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types with tunable diameter and morphology, tunable characteristics, having specific patterns and 3D structures.

With a strong focus on fundamental materials science and engineering, this book provides systematic and comprehensive coverage of the recent developments and novel perspectives of electrospun materials. This comprehensive book includes chapters that discuss the latest and emerging applications of nanofiber technology in various fields, specifically in areas such as wearable textile, biomedical applications, energy generation and storage, water treatment and environmental remediation, and sensors such as biomarkers in healthcare and biomedical engineering. Despite all these advancements, there are still challenges to be addressed and overcome for nanofiber technology to move towards maturation.

Author(s): Ashok Vaseashta, Nimet Bölgen
Publisher: Springer
Year: 2022

Language: English
Pages: 768
City: Cham

Foreword
Preface
Contents
About the Editors
Symbols and Abbreviations
Part I Fundamentals of Electrospinning
1 Introduction and Fundamentals of Electrospinning
1.1 Historical Background of the Electrospinning Process
1.2 Micro and Nanofibers Produced by Electrospinning
1.3 Basic Apparatus of Electrospinning and Recent Advances in Manufacturing Techniques
1.3.1 Melt Electrospinning
1.3.2 Needleless Electrospinning
1.3.3 Bubble Electrospinning
1.3.4 Coaxial Electrospinning
1.3.5 3D Electrospinning Technologies
1.4 Composite Nanofibers—Materials and Properties
1.5 Functionalized Nanofibers
1.5.1 Physical and Chemical Functionalization Methods
1.5.2 Functional Nanofibers with Desired Properties
1.6 Application Areas
1.6.1 Tissue Engineering
1.6.2 Drug Delivery
1.6.3 Textile Industry
1.6.4 Food Packaging Industry
1.6.5 Separation and Filtration Applications
1.6.6 Sensor Applications
1.6.7 Battery Materials
1.6.8 Protection Against Chemical and Biological Agents
1.6.9 Optical Cloaking
1.6.10 Water Contamination Mitigation
1.7 Future Trends and Conclusions
References
2 Fabrication Methodologies of Multi-layered and Multi-functional Electrospun Structures by Co-axial and Multi-axial Electrospinning Techniques
2.1 Introduction
2.2 Electrospinning Techniques for the Fabrication of Multi-material and Hollow Fibers
2.2.1 Multi-axial Electrospinning Methods
2.2.2 Side-by-Side Electrospinning Technique
2.3 Development of Nano/Micro and Multi-material Electrospun Hollow Fiber Structures
2.3.1 Fabrication of Core/Shell Fibers
2.3.2 Hollow Fibers Produced by Multi-axial Techniques
2.3.3 Side-by-Side Oriented Nanofiber Production (Janus Fibers)
2.4 Miscellaneous Electrospun Structures by Co- and Multi-axial Electrospinning Techniques
2.5 Potential Applications and Future Outlook
2.6 Conclusions
References
3 Solvent-Free Electrospinning—Application in Wound Dressing
3.1 Introduction of Solvent-Free Electrospinning
3.1.1 Melt Electrospinning
3.1.2 Supercritical CO2-Aided Electrospinning
3.1.3 Anion-Induced-Curing Electrospinning
3.1.4 UV-Curing Electrospinning
3.1.5 Thermocuring Electrospinning
3.1.6 Two-Component Electrospinning
3.2 Advantages and Challenges of Solvent-Free Electrospinning
3.2.1 High Efficient Utilization of Precursor
3.2.2 Ecofriendly Electrospinning Process
3.2.3 Challenges in Solvent-Free Electrospinning
3.3 Biomedical Applications of Solvent-Free Electrospinning
3.3.1 Tissue Engineering
3.3.2 Drug Sustained-Release Material
3.3.3 Fast Hemostasis
3.4 Conclusion and Perspective
References
4 Melt Electrospinning Writing
4.1 Introduction
4.2 Melt Electrospinning Writing (MEW)
4.2.1 Polymers Used for MEW
4.2.2 Parameters and Diameter of the Melt Electrowritten Fibers
4.2.3 Challenges and Limitations
4.3 Application of Melt Electrowritten Fibers
4.3.1 Tissue Regeneration
4.3.2 Improvement of Mechanical Properties of Materials
4.3.3 Combinatory Effect of Tissue Regeneration and Improvement of Mechanical Properties of Scaffolds
4.3.4 Mathematical and Computational Modeling for Developing Melt Electrowritten Fibers
4.4 Composites of Melt Electrowritten Fibers and Other Materials
4.5 Conclusion
References
5 Co-electrohydrodynamic Forming of Biomimetic Polymer Materials for Diffusion Magnetic Resonance Imaging
5.1 Introduction
5.2 Co-electrohydrodynamic Forming of Hollow Polymeric Materials
5.2.1 Co-electrospinning of Hollow Polymeric Fibres
5.2.2 Coaxial Electrospraying of Hollow Polymer Particles
5.3 Tissue Microstructure Mimicking Phantoms for Diffusion MRI
5.3.1 Brain, Heart and Tumour Microstructure
5.3.2 Co-EHD Microstructural Phantoms for Diffusion MRI
5.4 Summary
References
6 Polysuccinimide and Polyaspartamide for Functional Fibers: Synthesis, Characterization, and Properties
6.1 Introduction
6.2 Synthesis of PSI Gel Fibers by Post-spinning Chemical Crosslinking
6.3 Synthesis of PSI Gel Fibers by Post-spinning Plasma Crosslinking
6.4 Synthesis of PSI Gel Fibers by Coaxial Reactive Electrospinning
6.5 Synthesis of Redox-Sensitive PSI and PASP Gel Fibers by Reactive Electrospinning
6.6 Summary
References
Part II Applications of Electrospun Nanofibers
7 Electrospun Fibers in Drug Delivery
7.1 Introduction
7.2 Fiber Architecture
7.3 Pharmaceutical Polymers
7.4 Small Molecule Drugs
7.4.1 Fast Dissolving Drug Delivery Systems
7.4.2 Extended Release
7.4.3 Zero-Order Release
7.4.4 Targeted Release
7.4.5 Multi-stage Release
7.5 Electrospinning of Biologicals
7.5.1 Proteins
7.5.2 Cells and Extracellular Vesicles
7.6 Translation
7.7 Conclusions
References
8 Suitability of Electrospun Nanofibers for Specialized Biomedical Applications
8.1 Introduction
8.2 Wound Dressing
8.3 Drug Delivery
8.4 Vascular Grafts
8.5 Tissue Engineering
8.6 Enzyme Immobilization
8.7 Conclusıons
References
9 Biopolymeric Electrospun Nanofibers for Wound Dressings in Diabetic Patients
9.1 Introduction
9.2 Diabetes Mellitus and Impaired Wound Healing
9.3 Electrospun Nanofibers
9.3.1 Natural Biopolymers
9.3.2 Synthetic Polymers
9.4 Conclusion
References
10 Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both
10.1 Introduction
10.2 Electrospinning
10.2.1 Principles of Electrospinning
10.2.2 Control of the Electrospinning Process/Parameters
10.2.3 Fibrous Meshes Morphologies and Structures
10.3 Microfluidics
10.3.1 Principles of Microfluidics and Microfluidic Spinning
10.3.2 Fibrous Structures
10.4 Applications of Electrospinning and Microfluidic Spinning in the Biomedical Field
10.4.1 Tissue Engineering
10.4.2 Wound Dressing
10.4.3 Drug Delivery Systems
10.5 Hybrid Systems
10.5.1 Integration of Electrospun Nanofibrous Meshes into Microfluidic Systems
10.6 Conclusions
References
11 Multifunctional Wound Dressings Based on Electrospun Nanofibers
11.1 Introduction to Electrospun Nanofibers for Wound Dressing
11.1.1 Skin Wound and Wound Healing: Basic Aspects
11.1.2 Types of Wound Dressing: Conventional and Novel Multifunctional Ones
11.1.3 Electrospinning as a Suitable Alternative for Wound Dressing
11.2 Characterization of ESNF for Wound Dressings
11.2.1 Morphology, Porosity and Surface Area
11.2.2 Fluid Handling Capacity and Oxygen Permeation
11.2.3 Mechanical Properties
11.2.4 Chemical Composition
11.2.5 Biological Characterizations
11.3 Applications of ESNF Wound Dressings
11.3.1 Synthetic Polymers Applied to ESNF Wound Dressing Design
11.3.2 Natural Polymers Applied to ESNF Wound Dressing Design
11.4 Conclusions
References
12 Incorporating Poorly Soluble Drugs into Electrospun Nanofibers for Improved Solubility and Dissolution Profile
12.1 Introduction
12.2 Methods of Drug Incorporation into Electrospun Nanofibers
12.2.1 Blending
12.2.2 Surface Modification/Immobilization
12.2.3 Co-axial Electrospinning
12.2.4 Emulsion Electrospinning
12.2.5 Layer by Layer Electrospinning
12.3 Mechanism of Solubility Enhancement Using Electrospun Nanofibers
12.3.1 Nanonization
12.3.2 Porosity
12.3.3 Crystalline to Amorphous Conversion
12.3.4 Overcome Hydrophobicity
12.4 Nanofiber Complexes for Solubility Enhancement
12.5 Bioavailability Enhancement
12.6 Conclusion
References
13 Electrospun Nanofibers based Electrodes and Electrolytes for Supercapacitors
13.1 Introduction
13.2 Electric Double-Layer Capacitors (EDLC)
13.2.1 Pseudocapacitors
13.2.2 Hybrid Supercapacitors
13.3 Electrospun NFs Based Electrodes
13.3.1 Carbon Nanofibers (CNFs)
13.3.2 Carbon-Composite NFs
13.3.3 Metal-Oxide NFs
13.3.4 Spinel Oxides NFs
13.3.5 Perovskites NFs
13.3.6 Metal-Oxide Metal-Oxide Composites NFs
13.4 Electrospun Polymer Membrane Electrolytes (ESPMEs)
13.4.1 PVDF Based ESPMEs
13.4.2 PVDF-HFP Based ESPMEs
13.4.3 PAN-Based ESPMEs
13.4.4 PVA Based ESPMEs
13.4.5 Other Polymers Based ESPMEs
13.5 Conclusion and Future Outlook
References
14 Energy Harvesting Solutions Based on Piezoelectric Textiles Structures from Macro Nano Approach
14.1 Introduction
14.2 Materials Used for Piezo Applications
14.3 Microscale Fibers Used in Piezo Applications
14.4 Nanofibers
14.4.1 PVDF
14.4.2 Copolymers
14.4.3 PLA
14.4.4 PAN
14.4.5 Nanocomposite
14.5 Applications
14.5.1 Nanogenerators
14.5.2 Sensors
14.5.3 Energy Storage
14.6 Conclusion
References
15 Morphological and Mechanical Properties of Electrospun Polyurethane Nanofibers—Air-Filtering Application
15.1 Introduction
15.2 Materials and Methods
15.2.1 Electrospinning
15.2.2 Polymers
15.2.3 Solvents
15.2.4 Polymeric Concentration
15.2.5 Conductive Materials
15.2.6 Preparation of Polymeric Solutions
15.3 Characterization
15.3.1 Solution Characterization
15.3.2 Morphology Characterization
15.3.3 Physical Characterization
15.3.4 Mechanical Properties
15.4 Results and Discussion
15.4.1 Viscosity and Conductivity of Solutions
15.4.2 Morphology of Nanofibers
15.4.3 Mechanical Properties
15.5 Conclusion
References
16 Electrospun Polymeric Nanofibers: An Innovative Application for Preservation of Fruits and Vegetables
16.1 Introduction
16.2 Quality Attributes of Fruits and Vegetables
16.3 Methods to Prolong the Shelf Life of Fruits and Vegetables
16.4 Nanotechnology Applied to Food
16.5 Development of Nanofibers
16.5.1 Antimicrobial Nanofibers Applied to Food
16.5.2 Potential of Nanofibers in the Preservation of Fruits and Vegetables
16.6 Future Perspectives
16.7 Conclusions
References
17 Encapsulation of Bioactive Compounds in Electrospun Nanofibers for Food Packaging
17.1 Introduction
17.2 Polymeric Nanofibers as Material for Encapsulation by the Electrospinning Process
17.3 Bioactive Compounds for Encapsulation by Electrospinning
17.3.1 Phycocyanin
17.3.2 Phenolic Compounds and Essential Oils
17.3.3 Anthocyanins
17.4 Nanotechnology and Food Safety
17.5 Electrospun Nanofibers Containing Bioactive Compounds for Application in Food Packaging
17.5.1 Active Packaging
17.5.2 Functional Bioactive Packaging
17.5.3 Intelligent Packaging
17.5.4 Edible Packaging
17.6 Conclusion and Future Trends
References
18 Application of Electrospun Polyaniline (PANI) Based Composites Nanofibers for Sensing and Detection
18.1 Introduction
18.2 Electrospun Nanofibers Fabrication
18.3 Electrospun Metal Oxide Nanofibers-Based Sensor
18.4 Electrospun Polyaniline (PANI) Based Composites Nanofibers Sensor
18.4.1 Electrospun PANI/Polymer Composites Nanofibers
18.4.2 Electrospun PANI/Metal Oxide Composites Nanofibers
18.5 Conclusions
References
19 Protective Facemask Made of Electrospun Fibers
19.1 Introduction
19.2 Facemasks
19.3 The Global Market of Facemask
19.4 Types of Facemasks
19.4.1 Non-medical Masks
19.4.2 Medical Face Masks
19.5 Properties of Facemasks
19.5.1 Filtration Efficiency
19.5.2 Face Fitting
19.5.3 Breathable
19.5.4 Fluid Resistance
19.5.5 Reusable
19.5.6 Audible
19.5.7 Durable
19.6 Characterization Techniques for Facemasks
19.6.1 Bacteria Filtration Efficiency In Vitro (BFE)
19.6.2 Differential Pressure Test
19.6.3 Particle Filtration Efficiency
19.6.4 Breathing Resistance
19.6.5 Splash Resistance
19.6.6 Flammability
19.6.7 Biocompatibility and Toxicological Risk Assessments
19.6.8 Additional Test for Respirators (N95)
19.7 The Effect of COVID-19 on Demand for Facemasks
19.8 Electrospun Nanofibers
19.8.1 Properties and Application of Nanofibers
19.8.2 Use of Nanofibers in Filtration Applications
19.8.3 Use of Nanofibers for Facemasks
19.9 Nanofibers as Sole Facemasks
19.9.1 Nanofibers Coatings on Facemasks
19.9.2 Nanofibers from the Synthetic Origin for Facemasks
19.9.3 Nanofibers from the Natural Origin for Facemasks
19.9.4 Composite Nanofibers for Facemasks
19.10 Properties of Nanofibers that Influence the Facemasks
19.10.1 Influence of Fiber Diameter on Filtration Efficiency
19.10.2 Influence of Fiber Morphology on Filtration Efficiency
19.10.3 Influence of Porosity on Filtration Efficiency
19.10.4 Influence of Structure on Filtration Efficiency
19.11 Bioactive/Antiviral Nanofibers for Facemasks
19.12 Conclusions and Future Perspective
References
Part III Advanced Manufacturing
20 Electrospinning and Three-Dimensional (3D) Printing for Biofabrication
20.1 Introduction
20.2 Electrofabrication
20.2.1 Electrofabrication Methods: Principles, Techniques and Conditions
20.2.2 Developments and Generations of Electrofabrication Methods
20.2.3 Advantages and Limitations
20.3 3D Bioprinting
20.3.1 Microextrusion 3D Bioprinting
20.3.2 Inkjet 3D Bioprinting
20.3.3 Laser-Assisted 3D Bioprinting
20.3.4 Stereolithography 3D Bioprinting
20.3.5 Electrospinning-Based 3D Printing
20.4 Combining Electrospinning and 3D Bioprinting
20.4.1 Need, Approaches and Conditions
20.4.2 Application in Tissue Engineering
20.4.3 Advantages and Limitations
20.5 Challenges and Future Directions
20.6 Conclusions
References
21 Application of Hand-Held Electrospinning Devices in Medicine
21.1 Introduction
21.2 Characteristics and Advantages of Portable Electrospinning Devices
21.3 Portable Electrospinning Devices and Its In-situ Application
21.3.1 Hand-Held Electrospinning Devices and Its Applications
21.3.2 Battery-Driven Portable Electrospinning Devices and Its Applications
21.3.3 Generator-Driven Portable Electrospinning Device and Its Application
21.4 Functional Materials of Nanofibers
21.5 Conclusions and Prospects
References
22 Hierarchical Integration of 3D Printing and Electrospinning of Nanofibers for Rapid Prototyping
22.1 Introduction
22.2 Overview of Processes
22.2.1 3D Printing—Overview of the Basic Process
22.2.2 Electrospinning—Overview of the Basic Process
22.3 Configurations of Hierarchal Integration
22.4 Spectrum of Potential Applications
22.4.1 Tissue Engineering
22.4.2 Wound Dressing, Physical Augmentation and Personal Protective Equipment
22.4.3 Piezoelectric Materials—Tactile Sensing, Energy Harvesting and Biomedical Application
22.4.4 Piezoelectric Devices for Structural Health Monitoring
22.5 Conclusions and Future Applications
References
23 Integration of Electrospinning and 3D Printing Technology
23.1 Introduction
23.2 The Principle/Setup of Electrospinning and 3D Printing
23.2.1 The Principle/Setup of Electrospinning
23.2.2 The Principle/Setup of 3D Printing
23.3 The Integration of Electrospinning and 3D Printing
23.3.1 Near-Field Electrospinning
23.3.2 Melt Electrospinning
23.3.3 Other 3D Printed Electrospinning Technology
23.4 Materials for Electrospinning and 3D Printing
23.5 Engineering of the Materials
23.5.1 Control of In-Fiber Porosity and Geometry
23.5.2 Incorporation of Nanoparticles
23.5.3 Control of Morphology, Alignment, and Stacking
23.6 Scale-Up Production for Industrial Applications
23.6.1 Basic Research on Scale-Up Production of 3D Printed Electrospinning
23.6.2 Current Situation of Scale-Up Manufacturing Equipment for 3D Printing Electrospinning
23.7 Concluding Remarks
References
24 Electrospun Nanofibers for Industrial and Energy Applications
24.1 Introduction
24.2 Electrospinning
24.3 Electrostatic Interaction Principle
24.4 Effect of Parameters on Electrospinning
24.4.1 Applied Voltage and Flow Rate
24.4.2 Needle to Collector Distance
24.4.3 Type and Materials of Collector
24.4.4 Solvents
24.4.5 Solution Viscosity and Conductivity
24.5 Functional Nanofibers
24.6 Polymer-Based Electrospun Nanofiber
24.7 Cyclodextrins (CDs)
24.8 Inclusion Complexes (ICs)
24.9 Cyclodextrin Inclusion Complexes Encapsulating Electrospun Nanofiber (CDs-ICs-P-NF)
24.10 Polymer Free Electrospun Nanofiber (CDs-ICs-NF)
24.11 Food Packaging Applications
24.12 Pharmaceutical Applications
24.13 Energy Applications
24.14 Conclusions
References
25 Electrospun Nanofibers for Energy Harvesting
25.1 Introduction
25.2 Piezoelectric Nanogenerators (PNGs)
25.3 Piezo-Pyroelectric Hybrid Nanogenerators
25.4 Triboelectric Nanogenerators (TENGs)
25.5 Piezoelectric and Triboelectric Nanogenerators (PTNGs)
25.6 Conclusion
References
26 Development of Micro/Nano Channels Using Electrospinning for Neural Differentiation of Cells
26.1 Introduction: Neural Differentiation of Cells
26.2 Biomedical Applications of Electrospinning (an Overview)
26.2.1 Drug Delivery Systems
26.2.2 Wound Healing
26.2.3 Tissue Engineering Scaffolds
26.3 Electrospinning in Neural Differentiation of Cells
26.3.1 Polymeric Nanofibrous Scaffolds
26.4 Biomedical Applications of Microfluidics (an Overview)
26.5 Microfluidics in Neural Differentiation of Cells
26.6 Electrospinning and Microfluidic Hybrid Systems in Neural Differentiation of Cells
26.6.1 Electrospun Nanofibers in Attachment with a Microfluidic Chip
26.6.2 Microfluidic Spinning of Nanofibrous Scaffolds
26.6.3 Electrospun Fiber Molding for Fabrication of Microfluidic Channels
26.7 Conclusions
References
Author Index
Subject Index