Electrospun and Nanofibrous Membranes: Principles and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Electrospun and Nanofibrous Membranes: Principles and Applications covers the fundamental basic science and many engineering aspects of electrospun membrane technology and nanofibers, membrane design and membrane processes. The book comprehensively reviews a wide range of applications including pressure-driven processes, MD process, batteries, oil-water separation, air filtration, drug delivery, fuel-cells, and ion-exchange membranes, as well as antimicrobial membranes.

Electrospun and Nanofibrous Membranes will be useful for a range of audiences: chemical, polymer, and materials engineers; professors and graduate students working on membrane-based separation technology and electrospun nanofibers; as well as R&D engineers in industry working with applications including water and wastewater treatment, desalination, drug delivery and tissue engineering, new generation of batteries, fuel cells, and air filtration.

Author(s): Ali Kargari, Takeshi Matsuura, Mohammad Mahdi Mahdi A. Shirazi
Publisher: Elsevier
Year: 2022

Language: English
Pages: 660
City: Amsterdam

Front Cover
Electrospun and Nanofibrous Membranes: Principles and Applications
Copyright
Contents
Contributors
Part I: Principles
Chapter 1: Principles of electrospinning and nanofiber membranes
1. Introduction
1.1. History of membrane technology
1.2. The current state of membrane technology
1.3. Overview of fabrication techniques for membranes
1.4. Driving forces for developing the new generation of membranes
2. Electrospinning technology
2.1. What is a nanofiber?
2.2. Principles of electrospinning
2.2.1. Solution parameters
2.2.2. Operating parameters
2.2.3. Environmental parameters
2.3. Materials for electrospinning
2.4. Electrospun and nanofiber membranes
2.4.1. Advantages
2.4.2. Applications
3. Outlines of this book
References
Further reading
Chapter 2: Melt electrospinning for membrane fabrication
1. Introduction
2. Melt electrospinning
2.1. Principles of melt electrospinning
2.2. Melt electrospinning system
2.2.1. Polymer melt supply zone
2.2.2. Spinneret design
2.2.3. Fiber collection zone
3. Influential factors on melt electrospinning
3.1. Material parameters
3.1.1. Molecular weight and tacticity of polymers
3.1.2. Melt viscosity
3.1.3. Melt conductivity
3.2. Process parameters
3.2.1. Applied voltage
3.2.2. Collector distance, type, shape, and geometry
3.2.3. Melt flow rate
3.2.4. Collector rotation speed
3.2.5. Spinneret diameter
3.2.6. Nozzle temperature and ambient conditions
3.2.7. Heating mechanisms and configurations
3.2.8. Applied pressure
4. Progress in melt electrospinning devices
4.1. Disk melt electrospinning device
4.2. Laser melt electrospinning device
4.3. Extrusion melt electrospinning
4.4. Melt differential electrospinning method
5. Fabricating porous membranes by melt electrospinning
6. Conclusions
References
Chapter 3: Electrospraying for membrane fabrication
1. Introduction
2. Background of electrospray
3. Electrospray process and basic principles
4. Governing equations
4.1. Electrical equations
4.2. Fluid flow equations
5. Dimensionless numbers
6. Electrospraying modes
7. Effective parameters
7.1. Parameters related to the polymer solution
7.2. Process parameters
7.3. Ambient parameters
8. Multiple nozzle electrospray
9. High-throughput electrospray
10. Electrospray configurations
11. The comparison of electrospray and other methods in terms of fiber production
11.1. Nonelectrospinning methods
11.2. Electrospinning methods
11.3. Different electrospinning methods
12. Applications
12.1. Membrane distillation
12.2. Oil-water separation
12.3. Gas adsorption
12.4. Air filtration
12.5. Proton-exchange membrane fuel cells (PEMFCs)
13. Patents
14. Conclusions and future perspectives
References
Chapter 4: Gas-assisted electrospinning and electroblowing
1. Introduction
2. Input and setup parameters of the electroblowing process
2.1. Airflow and nozzle design
2.2. Airflow rate and the generation of tangential forces
2.3. Airflow temperature and humidity
2.4. Electrostatic field intensity and TCD
2.5. Combined multineedle nozzles
3. Regulated process parameters in the electroblowing method
3.1. Accelerated solvent evaporation
3.2. Time of flight of fibers and suppressed chaotic phase
3.3. Area covered by the deposit
3.4. Surface charge after depositions
4. Properties of fibrous structures produced by electroblowing
4.1. Acceleration of fiber production
4.2. Control over fiber diameters
4.3. Morphology and defects
4.4. The effects of process parameters on fiber properties
4.5. Polymers spun using the electroblowing method
4.6. Fiber applications and patents that include the electroblowing method
5. Conclusions and future perspectives
References
Chapter 5: Coaxial electrospinning
1. Introduction
2. Engineering fiber structures via coaxial electrospinning
2.1. Core-shell structures
2.2. Hollow structures
2.3. Multichannel structures
3. Coaxial electrospinning process and parameters
3.1. Coaxial electrospinning process
3.2. Coaxial electrospinning parameters
3.2.1. Solution parameters
Solution viscosity
Solution concentration
Solution/solvent miscibility and compatibility
Solvent vapor pressure
Solution conductivity
3.2.2. Process parameters
Applied voltage
Solution flow rate
Tip-to-collector distance (TCD)
Nozzle geometry
4. Applications of coaxial electrospinning
4.1. Biomedical applications
4.1.1. Drug delivery
4.1.2. Tissue engineering
4.2. Electrical/electrochemical applications
4.2.1. Dye-sensitized solar cells
4.2.2. Batteries
4.3. Environmental applications
4.4. Food applications
4.5. Other applications
5. Conclusions and future perspectives
References
Chapter 6: Bubble electrospinning: Mass production of nanomaterials
1. Introduction
2. Bubble electrospinning technology
2.1. Spider spinning
2.2. The mechanism of bubble electrospinning
2.3. Young-Laplace equation
2.4. Effect of bubble size on nanofiber diameter
2.5. Effect of spinning parameters on bubble electrospinning
2.5.1. Voltage
2.5.2. Collecting distance
2.5.3. Airflow
2.5.4. Solution concentration and viscosity
2.5.5. Solution conductivity
2.5.6. Surface tension
3. The device of bubble electrospinning
3.1. Multinozzle bubble electrospinning device
3.2. Single nozzle with a multibubbles electrospinning device
3.3. Single-bubble electrospinning device
3.4. Air bubble spinning device
3.5. Electrostatic-field-assisted blown bubble spinning device
3.6. Rotating porous electrospinning device
3.7. Critical bubble electrospinning device
4. Fiber morphology of bubble electrospinning
4.1. Hierarchical ruptured bubbles for nanofiber fabrication
4.2. Smooth cylindrical fibers
4.3. Nanoscale hollow fibers
4.4. Superthin films
4.5. Nanoporous spheres and fibers
4.6. Beaded fibers
4.7. Crimped nanofibers
4.8. Micro-yarn
4.9. Materials for bubble electrospinning
5. Conclusions and future perspectives
References
Chapter 7: Needleless electrospinning
1. Introduction
2. Principle of needleless electrospinning
3. Materials suitable for application in needleless electrospinning
4. Device set-up in needleless electrospinning
4.1. Upward needleless electrospinning
4.2. Downward needleless electrospinning
4.3. Sideward needleless electrospinning
5. Formation of core-shell nanofibers by needleless electrospinning
6. Application of needleless electrospun membranes
6.1. Pharmaceutical and biomedical
6.2. Environmental protection
6.3. Other applications
7. Recent patents on needleless electrospinning
8. Challenges and future perspectives
9. Conclusions
References
Chapter 8: Organic and inorganic electrospun nanofibers
1. Introduction
2. Fabrication methods of organic/inorganic nanofibers
2.1. Solution blending process
2.2. Layer-by-layer (LbL) assembly
2.3. In situ fabrication method
2.4. Coaxial electrospinning
3. Applications for organic/inorganic nanofibers
3.1. Environmental remediation
3.2. Sensor applications
3.3. Lithium-ion battery
3.4. Biomedical applications
3.5. Catalyst
4. Patent analysis
5. Characterization of organic/inorganic electrospun fibers
5.1. Morphological characterization
5.2. Chemical characterization
5.3. Mechanical properties
6. Conclusions and future trends
References
Chapter 9: Scale-up strategies for electrospun nanofiber production
1. Introduction
2. Categories of electrospinning technologies
2.1. Classification based on the type of spin dope
2.1.1. Solution electrospinning
2.1.2. Melt electrospinning
2.2. Classification based on the principles of electrospinning
2.2.1. Capillary electrospinning
2.2.2. Noncapillary electrospinning
2.3. Classification based on power type
2.3.1. DC electrospinning
2.3.2. AC electrospinning
2.4. Classification based on receiving distance
2.5. Classification based on production scale
2.5.1. Laboratory-scale electrospinning
Pioneer experimental-scale electrospinning
2.5.3. Industrial-scale electrospinning
3. Issues in electrospinning technology
3.1. Issues in capillary electrospinning
3.2. Issues in noncapillary electrospinning technology
4. Strategies for scale-up electrospinning
4.1. Strategies for scale-up capillary electrospinning
4.1.1. Modification of electric field distribution vs spinneret design
4.1.2. Spin dope clogging during capillary electrospinning
4.1.3. Low productivity
4.1.4. Low deposition accuracy of the filament in near-field electrospinning
4.2. Strategies for scale-up noncapillary electrospinning
4.2.1. Modification of electric field and its distribution
4.2.2. Low productivity
4.3. Melt electrospinning
4.4. Stabilization of spinning jets
4.5. Advantages of combination of capillary and noncapillary technologies
4.6. Measures against fire and explosion
5. Progress in large-scale electrospinning
6. Summary
Acknowledgment
References
Chapter 10: Nonelectro nanofiber spinning techniques
1. Introduction
2. Solution blowing (SB-spin)
2.1. Parameters of solution blowing
2.2. Solution blowing nanofiber applications
2.2.1. Filtration applications
2.2.2. Energy applications
2.2.3. Biomedical applications
3. Centrifugal spinning (CS)
3.1. Application fields
3.1.1. Energy applications
3.1.2. Biomedical applications
3.1.3. Filtration applications
4. Melt blowing
5. Other nonelectro nanofiber-spinning techniques
5.1. Template synthesis
5.2. Phase separation
5.3. Drawing
5.4. CO2 laser supersonic drawing (CLSD)
6. Hybrid nanofiber manufacturing techniques
7. Conclusions and future perspectives
References
Chapter 11: Characterization of nanofibers and nanofiber membranes
1. Introduction
2. Characterization of nanofibers and nanofiber membranes
3. Physical and morphological characterization
3.1. Morphology, diameter, and size distribution of nanofibers
3.1.1. Scanning electron microscopy (SEM)
3.1.2. Transmission electron microscopy (TEM)
3.1.3. Image-processing methods
3.2. Nanofiber membrane/mat thickness
3.3. Pore size and pore-size distribution of nanofiber membranes
3.3.1. Capillary flow porometry
3.3.2. Particle filtration test
3.4. Nanofiber membrane surface roughness and topography
3.5. The porosity of nanofiber membranes
3.5.1. Gravimetric method
3.5.2. Mercury-intrusion porosimetry
3.5.3. Image-processing methods
3.6. Wetting properties of nanofiber membranes
3.6.1. Contact angle
3.6.2. Sliding angle (SA)
3.6.3. Liquid entry pressure (LEP)
3.7. Surface area and pore structure of nanofiber membranes
3.7.1. Brunauer-Emmett-Teller (BET)
4. Mechanical characterization of the nanofibers
4.1. Tensile test for nanofiber membranes
4.2. Dynamic mechanical analysis (DMA)
4.3. Delamination
5. Chemical characterization of nanofibers
5.1. Elemental composition and oxidation state
5.1.1. X-ray photoelectron spectroscopy (XPS)
5.1.2. Energy-dispersive X-ray spectroscopy (EDS, EDX, EDXS, or XEDS)
5.2. Crystalline structure and phase
5.3. Functional groups
5.3.1. Fourier transform infrared (FTIR) spectroscopy
5.4. Chemical structure
5.4.1. Raman spectroscopy
6. Thermal characterization
6.1. Thermal gravimetric analysis (TGA)
6.2. Differential thermal analysis (DTA)
6.3. Differential scanning calorimetry (DSC)
7. Electrical and dielectric behavior measurement
7.1. Zeta potential and point of zero charge (ZPC)
8. Conclusion and future perspectives
References
Part II: Applications
Chapter 12: Electrospun membranes for microfiltration
1. Introduction
2. Comparison of conventional techniques for MF fabrication with electrospinning technique
3. Modification of electrospun nanofiber membranes for microfiltration
4. Application of electrospun nanofiber membranes on microfiltration
4.1. Desalination
4.2. Metal recovery
4.3. Virus and Bacteria removal
4.4. Oil-water separation
5. Recent patents in microfiltration application of nanofibrous membranes
6. Conclusions and future perspectives
References
Chapter 13: Electrospun membranes for UF/NF/RO/FO/PRO membranes and processes
1. Introduction
2. Pressure-driven membrane process
2.1. Ultrafiltration
2.2. Challenges in ultrafiltration ENMs
2.3. Nanofiltration and reverse osmosis
2.3.1. Challenges in NF and RO electrospun membrane filtration
3. Osmotically driven membrane processes
3.1. Challenges in electrospun osmotically driven membrane processes
4. Conclusion and future perspectives
References
Chapter 14: Electrospun and nanofibrous membranes for membrane distillation
1. Introduction
2. Electrospinning
2.1. Important parameters
2.2. Common polymers in electrospun nanofibers used for MD
3. Other fabrication methods
4. Characterization of electrospun nanofibrous membranes (ENMs) for MD
5. Modification of ENMs for MD
5.1. In situ hydrophobic construction
5.1.1. Inorganic additives
5.1.2. Organic additives
5.2. Postelectrospinning hydrophobic modification
6. Different types of ENMs
6.1. Single ENMs
6.2. Multilayer ENMs
6.3. Janus ENMs
7. Patents on ENMs for MD application
8. Future perspective and concluding remarks
References
Chapter 15: Nanofibers for oil-water separation and coalescing filtration
1. Introduction
2. Fundamentals of surface science
2.1. Surface energy
2.2. Surface roughness
3. Surface modification
3.1. Physical methods
3.1.1. Polymer blends and composites
3.1.2. Chemical and plasma methods
4. Preparation of nanofiber membranes
4.1. Process parameters
4.1.1. Parameters of electrospinning for the nanofiber production
4.1.2. Parameters of nanofibrous membrane production
5. Membrane stability
6. Case studies on separation of the oil-water emulsion
7. Fundamentals and applications of nanofiber-embedded coalescing filtration
7.1. Vegetable oil emulsions
7.2. Oiled wastewater
7.3. Refinery effluents
7.4. Petrol industry
8. Comparison of electrospun and phase inversion membranes for the separation of oil-in-water emulsion
9. Fouling and cleaning of the electrospun membranes applied for oil-in-water separation
10. Conclusion and future perspectives
References
Chapter 16: Electrospun adsorptive membranes for ion adsorption
1. Introduction
2. Concept of adsorptive membranes
3. Electrospinning techniques
4. Types of electrospun adsorptive membranes
5. Polymer types for nanofiber membranes
5.1. Synthetic polymers
5.2. Biodegradable/natural polymers
6. Modification methods
6.1. Preelectrospinning modifications
6.2. Postelectrospinning modifications
7. Electrospun functionalization
7.1. Amino groups
7.2. Carboxylate groups
7.3. Sulfonate groups
7.4. Thiol groups
7.5. Other functional groups
8. Inorganic electrospun membranes
9. Mixed matrix membranes
10. Current challenges and future potential
References
Chapter 17: Electrospun ion-exchange membranes
1. Introduction
2. Fundamental aspects of ion-exchange nanofibers
2.1. Size effect of nanofibers on properties
2.2. Production methods
3. Application of ion-exchange nanofibers
3.1. Catalysis
3.2. Membrane separation
3.3. Membrane adsorption
4. Summary and outlook
References
Chapter 18: Nanospun membranes developed by electrospinning techniques for drug delivery applications
1. Introduction
2. Electrospun fibers
3. Drug loading and drug release from electrospun nanofibers
3.1. Blending electrospinning
3.2. Coaxial electrospinning
3.3. Emulsion electrospinning
3.4. Drug loading by absorption
4. Materials
5. Applications
5.1. Oral drug delivery
5.2. Dermal/transdermal drug delivery
5.3. Wound healing
5.4. Mucosal delivery
6. Conclusions and future prospective
Acknowledgments
References
Further reading
Chapter 19: Antimicrobial electrospun membranes
1. Introduction
2. Main applications of antimicrobial nanofibrous membranes
2.1. Food packaging
2.2. Filtration
2.3. Wound dressing
3. Antimicrobial agents and their usage in wound dressings
3.1. Natural antibacterial materials
3.2. Synthetic antibacterial materials (antibiotics)
3.3. Nanoparticles
3.4. Wound-healing process
3.5. Wound-healing materials
4. Conclusion and future perspectives
References
Chapter 20: Electrospun membranes for batteries
1. Introduction
2. Electrospun membranes for the fabrication of LIBs
2.1. Electrospun membranes to fabricate cathodes in LIBs
2.2. Electrospun membranes to fabricate anodes in LIBs
2.3. Electrospun membranes to fabricate separators and electrolytes in LIBs
3. Electrospun membranes for the fabrication of next-generation batteries
4. Research and commercialization efforts across the world
5. Challenges and perspectives
References
Chapter 21: Electrospun membranes for fuel cell technology
1. Introduction
2. Electrospinning setup and process
2.1. Configuration of the collectors
2.2. Types of the collectors
2.3. Collector dimensions
2.4. Nozzle configurations
3. Operating parameters for electrospinning
4. Electrospun membranes for fuel cell applications
5. Conclusion and future perspectives
References
Chapter 22: Electrospun membranes for air filtration
1. Introduction
2. Mechanism of filtration
2.1. Theory
2.2. Effect of membrane structure
2.3. Effect of membrane and particle charge
3. Performance evaluation
4. Electrospun nanofiber materials for air filtration
4.1. Polymers
4.2. Biopolymers
4.3. Additives
4.4. Solvents
5. Electrospun nanofiber configurations
6. Applications for air filtration
6.1. Individual protection devices
6.2. Environmental remediation
6.3. Recovery of volatile organic compounds (VOCs)
6.4. Ventilation and climate control
7. Conclusions and future perspectives
References
Chapter 23: Smart and novel nanofiber membranes
1. Introduction
2. Janus membranes
3. Nanofiber membranes in regenerative medicine
4. Nanofiber membranes with nanonets/spider web
5. Nanofibrous sensitive membranes
6. Nanofiber membranes for the encapsulation of bioactive compounds
7. Conclusion and future perspectives
References
Chapter 24: Future perspectives and market of the electrospun and nanofibrous membranes
1. Introduction
2. Progress in research and technology
2.1. Trends in research
2.2. Trends in material
2.3. Trends in technology for nanofiber mass production
3. Progress in the market
4. Future perspective
References
Index
Back Cover