Electronics for Physicists: An Introduction

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book provides undergraduate physics majors and students of related sciences with a sound understanding of basic electronics and how it is used in the physical sciences. While today few science students go on to careers that demand an ability to design and build electronic circuits, many will use and rely on electronics. As scientists, they will require an appropriate level of fundamental knowledge that enables them, for example, to understand what electronic equipment is doing, to correctly interpret the measurements obtained, and to appreciate the numerous links between electronics and how it is practiced and other areas of science. Discussing electronics in the broader context and from the point of view of the scientist, this book is intended for students who are not planning to become electronics specialists but who will use electronics. It has been written in a relatively informal style and includes many detailed examples, as well as some “outside the box” material, including some ideas from quantum computing, to inspire thought and creativity. A selection of relevant exercises is included at the end of each chapter.

In the updated second edition, some sections are clarified and end-of-chapter problems are added. It includes an additional chapter on quantum logic/computing

Author(s): Bryan H. Suits
Series: Undergraduate Lecture Notes in Physics
Edition: 2
Publisher: Springer
Year: 2023

Language: English
Pages: 346
City: Cham
Tags: Electronics; Electronic Circuits; Inductive Position Sensors; Linear Device; Semiconductor Diode; Transistor Models; Op-amp Circuits; Quantum Logic

Preface
Contents
1 The Basics
1.1 Voltage and Current
1.2 Simple Devices
1.3 Kirchhoff’s Laws
1.4 Resistors in Series
1.5 Resistors in Parallel
1.6 Effective Resistance
1.6.1 Resistors in Parallel–Notation
1.7 Solving Circuits with Circuit Reduction
1.8 Solving Circuits with Algebra
1.8.1 Branch and Mesh Currents
1.8.2 Example—Using Kirchhoff’s Laws
1.8.3 Nodal Analysis
1.9 The Ideal Current Source
1.10 The Ground and Common Connections
1.11 Multiple Sources—The Superposition Theorem
1.12 Electrical Power
1.13 Additional Application—The Kelvin-Varley Divider
1.14 Problems
2 Additional Theorems
2.1 Thevenin and Norton Equivalents
2.1.1 Determining the Thevenin and/or Norton Parameters
2.1.2 How Is This Used for Circuit Reduction?
2.1.3 Equivalent for an Infinite Array of Resistors
2.2 The Wheatstone Bridge
2.2.1 Wheatstone Bridge “Hieroglyphics”
2.3 The Reciprocity Theorem
2.3.1 Example—R-2R Ladder with Sources
2.4 Delta-Y Conversion
2.5 The Kelvin Bridge
2.5.1 Additional Application—Resistivity of Lamellae
2.6 Problems
References
3 Complex Impedances
3.1 What is a Linear Device?
3.2 Some Vocabulary
3.3 Passive Linear Circuit Elements with Two Leads
3.4 Idealized Sources
3.5 RC and L/R Time Constants
3.5.1 RC Time Constant Example
3.6 Capacitors and Inductors with Sinusoidal Sources
3.7 Superposition and Complex Impedances
3.8 Series and Parallel Capacitors and Inductors
3.9 Comments About Complex Arithmetic
3.10 Solving Circuits Using Complex Impedances
3.11 AC Power
3.12 Condenser Microphones
3.13 Problems
4 More on Capacitors and Inductors
4.1 Real Capacitors and Inductors
4.2 Measuring Capacitors and Inductors
4.3 Capacitive Position Sensors
4.4 A Simple Circuit for Measuring Inductors
4.5 Switched Capacitor Methods
4.6 Charging a Capacitor Efficiently
4.7 Mutual Inductance and Transformers
4.8 The Dot Convention for Transformers
4.9 Inductive Position Sensors
4.10 RLC Circuits
4.11 Cable Models
4.11.1 Cable Impedance
4.11.2 Signal Speed in a Cable
4.11.3 Impedance of Finite Cables
4.12 Capacitor and Inductor Labels
4.13 Duality
4.14 Problems
References
5 The Laplace Transform
5.1 The Transform
5.2 Laplace Transform Example 1
5.2.1 Method I
5.2.2 Method II
5.3 Laplace Transform Example 2
5.4 Laplace Transform Example 3
5.5 Comment on Partial Fractions
5.6 Poles and Zeros
5.7 Problems
6 Diodes
6.1 Semiconductor Diodes
6.2 Diode Models
6.2.1 Piece-Wise Linear Diode Models
6.2.2 An Analytic Model for the Semiconductor Diode
6.3 Solving Circuits with Diodes
6.3.1 The Ideal Diode
6.3.2 Graphical Solutions
6.4 Diode Ratings
6.5 Diode Capacitance and Response Time
6.6 Specialty and Other Diodes
6.7 Problems
7 FETs
7.1 Junction Field Effect Transistors
7.2 Circuit Analysis with a JFET
7.2.1 Example 1—Determine Circuit Components
7.2.2 Example 2—Determining the Operating Point
7.3 The FET A.C. Model
7.3.1 Example—Determine Transistor Parameters
7.4 FET Amplifier Configurations
7.4.1 Example—Gain for Common Drain Amplifier
7.4.2 Example—Impedances for Common Gate Amplifier
7.5 The Ohmic Region
7.6 MOSFETs
7.7 Additional Application—Dynamic Memory
7.8 Problems
8 Bipolar Junction Transistors
8.1 BJT D.C. Model
8.2 BJT A.C. Model
8.2.1 BJT Large Signal Example—Graphical Solutions
8.2.2 Single Supply Operation
8.2.3 Solutions from Parameters
8.3 BJT Amplifiers
8.3.1 Example—Common Emitter Amplifier
8.3.2 Example—Common Collector Amplifier
8.3.3 Using the Saturation Region
8.4 Problems
9 More on Amplifiers
9.1 Miller’s Theorem
9.2 Two-Transistor Configurations
9.2.1 The Cascode Configuration
9.2.2 The Darlington Pair
9.2.3 Complementary Symmetry Amplifier (“Push–Pull”)
9.2.4 Differential Amplifier
9.2.5 Current Mirror
9.2.6 Silicon Controlled Rectifiers (SCR) and Triacs
9.3 Connecting Amplifiers
9.3.1 Impedance Matching
9.4 Problems
10 The Ideal Op-Amp
10.1 Ideal Op-Amp Properties
10.2 Linear Op-Amp Circuits
10.2.1 Example 1—Buffer
10.2.2 Example 2—Inverting Amplifier
10.2.3 Example 3—Non-inverting Amplifier
10.2.4 Example 4—Difference Amplifier
10.2.5 Example 5—Summing Amplifier
10.2.6 Example 6—Integrator
10.2.7 Example 7—Low-Pass Filter
10.2.8 Example 8—Instrumentation Amplifier
10.2.9 Example 9—A Capacitive Sensor for Smaller Values of Capacitance
10.2.10 Example 10—Negative Resistor
10.2.11 Example 11—Constant Current Source
10.3 Other Op-Amp Circuits
10.3.1 Example 12—Non-linear Element in Feedback
10.3.2 Example 13—Ideal Diode
10.3.3 Example 14—Peak Follower
10.3.4 Example 15—Log Amplifier
10.3.5 Example 16—Absolute Value Circuit
10.4 More Power
10.5 Less than Ideal Difference Amplifiers
10.5.1 Finite Input Resistance and Gain
10.5.2 Finite Frequency Range
10.5.3 Small Signals and Drift
10.6 Oscillations
10.7 The Transconductance Amplifier
10.8 Problems
References
11 Non-linear Uses of Op-Amps
11.1 Limited Output Range
11.2 The Op-Amp Comparator
11.2.1 Example 1—Low-Level Warning
11.2.2 Example 2—Pulse Generator
11.2.3 Example 3—Simple Oscillator
11.2.4 Example 4—A Voting Circuit
11.2.5 Example 5—Sine to Pulse Train Converter
11.2.6 Example 6—Zero Crossing Detector
11.2.7 Example 7—Pulse Conditioner/Lengthener
11.3 Using the Comparator for Feedback
11.3.1 Automatic Gain Control Amplifier
11.4 Putting Pieces Together
11.4.1 Simple Phase Sensitive Detector
11.5 Problems
12 Digital I
12.1 Boolean Algebra
12.2 Useful Rules and Theorems for Boolean Algebra
12.3 Digital Logic Circuits
12.4 Combinations of Digital Logic Gates
12.4.1 Example 1—Solving with Boolean Algebra
12.4.2 Example 2—Solving with a Truth Table
12.4.3 Example 3—Solving Both Ways
12.5 Equivalent Circuits
12.6 Gates Versus Logic Functions
12.7 Decoders and Encoders
12.8 Multiplexing
12.9 Flip-Flop Circuits
12.10 Edge-Triggered Flip-Flops
12.11 A Directional Electric Eye
12.12 Combinations of Flip-Flops
12.12.1 Shift Register
12.12.2 Binary Counter
12.13 Other Non-logical Applications
12.13.1 Very Short Pulse Generator
12.13.2 Oscillators
12.14 Problems
13 Digital II
13.1 Binary and BCD Numbers
13.1.1 Binary Numbers
13.1.2 BCD Numbers
13.1.3 Hexadecimal and Octal Notation
13.2 Other Weighted Binary Codes
13.2.1 The 4221 Code
13.2.2 2 of 5 Codes
13.3 Non-weighted Codes
13.3.1 Gray Code
13.3.2 The ASCII Code
13.4 Bar Codes
13.4.1 Interleaved 2 of 5
13.4.2 UPC Codes
13.5 Some Numeric Code Conversions
13.5.1 Base-2 Binary to Gray Code
13.5.2 Gray Code to Base-2 Binary
13.5.3 Decimal to Gray Code
13.5.4 BCD to Binary Conversion
13.5.5 Binary to BCD Conversion
13.6 Digital to Analog Conversion
13.6.1 The 1-Bit D/A
13.6.2 A Summing D/A
13.7 Analog to Digital Conversion
13.7.1 Voltage to Frequency Conversion
13.7.2 Timing Schemes
13.7.3 Search Schemes
13.7.4 Analog to Gray Code Conversion
13.8 Quantization Noise
13.9 Problems
Reference
14 Calculators and Computers
14.1 Adding Base-2 Numbers
14.2 Two’s Complement Arithmetic
14.3 A Simple Arithmetic Logic Unit (ALU)
14.4 Base-2 Multiplication
14.5 Some Recursive Computations
14.5.1 Compute 1/x
14.5.2 Compute (1/x)½
14.5.3 Compute x½
14.5.4 Compute tan(x)
14.5.5 Compute K(k)
14.6 Communications
14.7 Tri-state Outputs
14.8 Simplified CPU
14.9 Other Uses for Tri-state Devices
14.9.1 Measuring a Small Capacitance
14.9.2 Charlieplexing
14.10 Problems
References
15 Quantum Logic
15.1 Reversible Gates
15.2 Schematics
15.3 Tensor Notation
15.4 Quantum Physics
15.5 The Qubit
15.6 Entanglement
15.7 The Nature and Future of Quantum Computations
15.8 Problems
References
Appendix
A.1 SI Units
A.2 Common Unit Prefixes
A.3 Fourier Series
A.3.1 How a Fourier Transform Works
A.4 Complex Numbers—A Review
A.4.1 The Basics
A.4.2 Some Complex Identities
Index