Dynamics of cave development by allogenic water

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Speleogenesis and Evolution of Karst Aquifers // The Virtual Scientific Journal
www.speleogenesis.info
Re-published by permission from: Acta Carsologica vol. 30, n.2, 2001, 14-32.
Streams that drain from non-karstic surfaces tend to have great discharge fluctuations and low concentrations of dissolved solids. Where these streams encounter karstic rocks they can form caves with hydraulic and chemical dynamics quite different from those fed by autogenic recharge (e.g. through dolines). In either case, caves form only along those paths in which the discharge can increase with time. Only a few favorable paths achieve this goal, while the others stagnate with small and diminishing enlargement rates. Caves in carbonate rocks that are fed by allogenic streams have a relatively short inception period, after which the mean-annual rate of dissolutional wall retreat is typically about 0.01 cm/yr. Most of the annual growth takes place during a few major floods that occupy only a small fraction of the year. Local growth rates can be enhanced by abrasion from sediment.
During floods, highly aggressive water is delivered rapidly to points deep within the karst aquifer. As flood discharge increases, cave streams become ponded by constrictions caused by detrital sediment, insoluble beds, or collapse material. The head loss across a constriction varies with the fifth power of the diameter ratio under pipe-full conditions. Head loss also increases with the square of the discharge. Because the discharge during a flood rises by several orders of magnitude, the head loss across constrictions can increase enormously, causing water to fill parts of the cave under considerable pressure. This highly aggressive water is injected into all available openings in the surrounding bedrock, enlarging them at a rapid and nearly uniform rate. Depending on the structural nature of the bedrock, a dense array of blind fissures, pockets, anastomoses, or spongework is formed. Many such caves develop traversable mazes that serve either as bypass routes around constrictions, or as "karst annexes", which store and later release floodwaters. Many features that are sometimes attributed to slow phreatic flow or mixing corrosion are actually generated by ponded floodwaters. In caves that experience severe flooding, adjacent fissures or bypass routes with initial widths at least 0.01 cm can grow to traversable size within 10,000 years.

Author(s): Palmer A.N.

Language: English
Commentary: 1582386
Tags: Горно-геологическая отрасль;Инженерная геология и гидрогеология