Development of Solar Cells: Theory and Experiment

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents a comprehensive overview of the fundamental concept, design, working protocols, and diverse photo-chemicals aspects of different solar cell systems with promising prospects, using computational and experimental techniques. It presents and demonstrates the art of designing and developing various solar cell systems through practical examples. Compared to most existing books in the market, which usually analyze existing solar cell approaches this volume provides a more comprehensive view on the field. Thus, it offers an in-depth discussion of the basic concepts of solar cell design and their development, leading to higher power conversion efficiencies. The book will appeal to readers who are interested in both fundamental and application-oriented research while it will also be an excellent tool for graduates, researchers, and professionals working in the field of photovoltaics and solar cell systems.  

Author(s): Juganta K. Roy, Supratik Kar, Jerzy Leszczynski
Series: Challenges and Advances in Computational Chemistry and Physics, 32
Publisher: Springer
Year: 2021

Language: English
Pages: 251
City: Cham

Preface
Contents
Contributors
Recent Progress in Perovskite Solar Cell: Fabrication, Efficiency, and Stability
1 Introduction
1.1 The Structure and Properties of PSC
1.2 Preparation Techniques for PSC
2 The Efficiency Improvement of PSC
2.1 Materials and Microstructure
2.2 Advanced Fabrication Methods and Techniques
3 PSC Stability
3.1 Moisture Stability
3.2 UV Light Stability
3.3 Thermal Stability
4 Other Issues
5 Conclusions and Perspectives
References
State-of-the-Art of Solution-Processed Crystalline Silicon/Organic Heterojunction Solar Cells: Challenges and Future
1 Introduction
2 PEDOT:PSS and PEDOT:PSS/c-Si Heterojunction Solar Cells
2.1 Electronic Structure of PEDOT:PSS/c-Si Heterojunction Solar Cells
2.2 Fabrication Procedure of PEDOT:PSS/n-Si Heterojunction Solar Cells
3 Carrier Transport in PEDOT:PSS/n-Si Heterojunction: Schottky or p+n Junction?
3.1 Modeling of PEDOT:PSS/n-Si Junction
3.2 Analysis of PEDOT:PSS/n-Si Junction
3.3 Junction Type of PEDOT:PSS/n-Si
3.4 Evolution of the PEDOT:PSS/c-Si Heterojunction Solar Cells
4 Challenges of PEDOT:PSS/c-Si Heterojunction Solar Cells
4.1 Light Soaking Stability
4.2 Air Storage Stability
5 Future Directions to PEDOT:PSS/n-Si Heterojunction Solar Cells
5.1 Use of BSF Layer for Higher Open-Circuit Voltage
5.2 Efficient Light Management: ARC Design for PEDO:PSS/n-Si Heterojunction Solar Cells
6 Conclusions
References
Structure, Electronic, and Charge Transfer Properties of Organic Photovoltaics from Density Functional Theory Methods
1 Introduction
2 The P3HT/PCBM OPV
3 Structure of the P3HT/PCBM Interface
3.1 The Model System
3.2 Computational Details
3.3 The PES of the P3HT/PCBM Dimer
4 QTAIM Properties
5 Optical Properties
6 Charge Separation Rates
7 Conclusions
References
Dye-Sensitized Solar Cells: A Brief Historical Perspective and Uses in Multijunction Devices
1 A Brief Historical Perspective
2 Multijunction System Performances and Analysis
3 DSC/DSC Multijunction Systems
4 DSC/OPV Multijunction Systems
5 DSC/PSC Multijunction Systems
6 DSC/CIGS Multijunction Systems
7 DSC/Silicon Multijunction Systems
8 Conclusions
References
Delving Charge-Transfer Excitations in Hybrid Organic–Inorganic Hetero Junction of Dye-Sensitized Solar Cell: Assessment of Excitonic Optical Properties Using the GW and Bethe–Salpeter Green’s Function Formalisms
1 Introduction
2 Theoretical Framework
2.1 GW Formalism
2.2 Bethe–Salpeter Equation
3 Applications
3.1 Estimation of Electronic Band Gap and Optical Spectra of DSSC Photoanode Material (TiO2)
3.2 Calculations of Low-Lying Charge-Transfer Excitation Energies of Coumarin-based DSSC Photosensitizers
3.3 Estimation of Quasi-Particle Energy Levels in Organic Chromophores and Dye/Semiconductor Interfaces and Simulation of Photoelectron Spectroscopy of Organic–Inorganic Hybrid
3.4 Determination of Rate of Interfacial Electron Injection and Open-Circuit Voltage in DSSC
3.5 Large-Scale GW-BSE Formulation for Evaluating Excitonic Energies and Optical Absorption Spectra of Dye/Semiconductor Systems in DSSC
4 Summary and Outlook
References
Promising DSSCs Involving Organic D–π–A and Similar Structures for n- and p-type Semiconductors—A Theoretical Approach
1 Introduction
1.1 Requirement of Energy
1.2 Sources of Energy
2 Why Solar Energy?
2.1 What Are Photovoltaic/Solar Cells?
2.2 Different Kinds of Solar Cells
3 Why DSSCs Are Important
4 Development of New Dye Sensitizers
4.1 Studies on Metal-Centered Dyes
4.2 Studies on Organic Dyes
5 My Contributions
5.1 Theoretical Calculation Strategy
6 Conclusion
References
Application of QSPR Modeling in Designing and Prediction of Power Conversion-Efficient Solar Cell
1 Introduction
2 QSPR Modeling and Its Importance in Solar Cell
3 How QSPR Works for Solar Cell Modeling
4 Successful QSPR Models in Solar Cell
4.1 Modeling Study on DSSC
4.2 Modeling Study on PSCs
4.3 QSPR Modeling of Absorption Maxima
5 Designing of Solar Cells, Employing QSPR and Machine Learning Models
6 Databases of Solar Cells for Modeling
7 Future Avenues
7.1 Webserver for %PCE Prediction of Solar Cell
7.2 Global Models
8 Conclusion
References
Computational Screening of Organic Dye-Sensitizers for Dye-Sensitized Solar Cells: DFT/TDDFT Approach
1 Introduction
2 Working Principle of DSSCs
3 Essential Criteria of an Efficient Sensitizer
4 Factors Affecting the PCE of DSSCs
4.1 Short-Circuit Current Density (JSC)
4.2 Open-Circuit Voltage (Voc)
4.3 Interfacial Properties
4.4 Planar Electrostatic Average Protentional
4.5 Photostability in the Excited State of the Dyes
4.6 TDDFT Nonadiabatic Molecular Dynamics (NAMD) Simulation
5 Conclusions
References
Chemometric Modeling of Absorption Maxima of Carbazole Dyes Used in Dye-Sensitized Solar Cells
1 Introduction
1.1 Mechanism of DSSCs
1.2 Ideal Characteristics of the Dye Used in DSSCs
2 Materials and Methods
2.1 Dataset Preparation
2.2 Structure Representation
2.3 Descriptor Calculation and Dataset Division
2.4 Model Development and Validation
2.5 Applicability Domain Assessment
3 Results and Discussion
4 Conclusion
References
Index