Design of Mechanical Systems: Accelerated Lifecycle Testing and Reliability

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book describes how reliability can be embedded into the product development using a design methodology that uses parametric accelerated lifecycle testing (ALT) .


The book has these features:


•           A new reliability methodology, based on inferential statistics, that can determine whether the reliability of a mechanical/civil system is achieved.


•           A unique reliability methodology to prevent reliability disasters in new mechanical products in the field, e.g., automobiles and airplanes.


•           Robust design methodology of mechanical/civil product to withstand a variety of loads.


•           Explanation of an alternative experimental Taguchi methodology.


•           Discussion of how parametric ALT can also be used to predict product reliability―lifetime and failure rate.


•           Detailed case studies that demonstrate parametric ALT methodology.


This book will be useful for senior-level undergraduate and graduate students, professional engineers, college and university-level lecturers, researchers, and design managers in mechanical and civil engineering.


Author(s): Seongwoo Woo
Series: Springer Series in Reliability Engineering
Publisher: Springer
Year: 2023

Language: English
Pages: 430
City: Cham

Preface
Contents
About the Author
1 Introduction to the Necessity of Design Methodology
1.1 Introduction
1.2 Mechanical Product—Refrigerator (or Air Conditioner)
1.2.1 Refrigerator (or Air Conditioner)
1.2.2 Brief History of Refrigeration
1.2.3 Vapor-Compression Refrigeration (VCR) System
1.2.4 Air-Conditioning Systems and Equipment
1.2.5 Refrigerant
1.2.6 Vapor Absorption Refrigeration System
1.2.7 Major Equipment of Vapor-Compression Refrigeration Systems
1.3 Other Mechanical Products—Automobile, Airplane, Etc.
1.3.1 Automobile
1.3.2 Airplane
1.3.3 Heavy Machinery
1.3.4 Machine Tools
1.4 Reliability Disasters and Its Assessment Significance
1.4.1 Quality and Reliability
1.4.2 Reliability Disasters
1.5 Historical Review of Development of Reliability Methodologies
References
2 Engineering (Dynamic) Load Analysis
2.1 Introduction
2.2 Statics Principles
2.2.1 (Static) Force as a Vector
2.2.2 Moment (or Couple) of a Force
2.2.3 (Mass) Moment of Inertia
2.2.4 Equilibrium
2.3 (Dynamic) Modeling of Mechanical System (Power System)—Direct Method
2.3.1 Introduction
2.3.2 Reference Frames and Vectors—Displacement, Velocity, and Acceleration
2.3.3 Velocity at Two Rotating Frames
2.3.4 Linear Impulse Momentum
2.3.5 Angular Momentum of a Particle (or Rigid Body) for Motion of Equation (MOE)
2.3.6 Four Classes for Rigid Rotational Motion
2.3.7 Degree of Freedom (DOF), Coordinate System, Free Body Diagram, and Equation of Motion
2.4 Energy Method—D’Alembert’s Principle and Lagrangian
2.4.1 D’Alembert’s Principle for Mechanical Systems
2.4.2 Derivation of Lagrange’s Equations from D’Alembert’s Principle
2.5 Bond-Graph Modeling
2.5.1 Introduction
2.5.2 Basic Elements, Energy Relations, and Causality of a Bond Graph
2.5.3 Case Study: Failure Analysis and Redesign of a Helix Upper Dispenser
3 Probability and Its Distribution in Statistics
3.1 Fundamentals of Probability
3.2 A Short History of Statistics and Probability
3.3 Statistics Terminologies
3.4 Probability Distributions
3.4.1 Binomial Distribution
3.4.2 Poisson Distribution
3.4.3 Poisson Process
3.4.4 Exponential Distribution
3.4.5 Normal Distribution
3.4.6 Sample Distributions
3.4.7 Central Limit Theorem
3.5 Weibull Distributions and Reliability Testing
3.6 Reliability and Bathtub Curve
3.6.1 Product Reliability
3.6.2 Bathtub Curve
3.6.3 Cumulative Distribution Function F(t)
3.7 Lifetime Metrics for Design
3.7.1 Mean Time to Failure (MTTF)
3.7.2 Mean Time Between Failures (MTBF)
3.7.3 BX Life
4 Design of Mechanical Structure Including Mechanisms
4.1 Introduction
4.2 Mechanical Structure Including Mechanisms
4.2.1 Introduction
4.2.2 Mechanical Mechanisms
4.3 Design of Mechanisms
4.3.1 Classification of Mechanisms
4.3.2 Terminologies
4.3.3 Kinematic Chain and Mobility
4.3.4 Kinematic Model/Diagram
4.3.5 Grashof’s Law and Some Inversion Mechanisms
4.3.6 Kinematic Analysis of Mechanisms
4.4 Design of the Belt Drive
4.4.1 Length of the Belt and Contact Angle
4.4.2 Proportion of Driving Tensions for Flat Belt
4.5 Design of the Gear Drive
4.5.1 Introduction
4.5.2 Types of Gears
4.5.3 Nomenclature of (Spur) Gears
4.5.4 Design of (Spur) Gear Trains
4.5.5 Force Components and Reaction Forces of (Spur) Gears
4.5.6 Lewis Bending Equation for Design of (Spur) Gear
4.5.7 Design of Epicyclic Gear Train (Planetary Gear)
4.5.8 Design of Bevel Gears
4.6 Design of Bearing
4.6.1 Introduction
4.6.2 Classification of Bearings
4.6.3 Bearing Life and Load Ratings
4.6.4 Bearing Design
Reference
5 Mechanical System Design (Strength and Stiffness)
5.1 Introduction
5.2 Strength of Mechanical Product
5.2.1 Introduction
5.2.2 Elasticity
5.2.3 Beam
5.2.4 Flat Plate
5.2.5 Torsion Member
5.3 Stiffness of Mechanical Product—Vibration
5.3.1 Introduction
5.3.2 Analysis of the Free Vibratory Motion in Mechanical Systems
5.3.3 Analysis of the Forced Vibratory Motion in Mechanical Systems
5.3.4 Vibration Isolation of Mechanical Systems
5.3.5 Multiple Degree-of-Freedom (MDOF) Systems
5.3.6 Modal Analysis of Vibration Systems (Mode Superposition)
5.3.7 Response of 2-DOF Systems by the Use of Transfer Functions
6 Mechanical System Failure
6.1 Introduction
6.2 Failure Mechanics and Design for Mechanical Products
6.2.1 Introduction
6.2.2 Quantum Mechanics
6.2.3 The Schrodinger Equation
6.2.4 Solving the Schrodinger Equation—Infinite Square Well
6.2.5 Flux
6.2.6 Diffusion
6.2.7 Mechanism of Slip
6.2.8 Stress Concentration at the Crack Tip
6.2.9 Fracture Toughness and Crack Propagation
6.2.10 Crack Growth Rates
6.3 Fatigue Failure
6.3.1 Introduction
6.3.2 Fluctuating Load
6.4 Fracture Failure
6.4.1 Introduction
6.4.2 Ductile–Brittle Transition Temperature (DBTT)
References
7 Design Methodology—Parametric Accelerated Life Testing
7.1 Introduction
7.2 Parametric ALT for Mechanical System
7.2.1 BX Lifetime in a Product
7.2.2 Positioning a Total Parametric ALT Procedure
7.2.3 Failure Model and Sample Size Formulation
7.2.4 Derivation of Sample Size Equation—Version I
7.2.5 Simplified Sample Size Equation—Version II
7.2.6 Derivation of Sample Size Equation—Version III
References
8 Case Studies of Parametric Accelerated Life Testing (ALT)
8.1 Improving the Lifetime of a Localized Ice-Maker
8.2 Residential-Sized Refrigerators During Transportation
8.3 Hinge Kit System (HKS) in a Kimchi Refrigerator
8.4 Freezer Drawer System in a Refrigerator
8.5 Compressor Suction Reed Valve
8.6 Failure Analysis and Redesign of the Evaporator Tubing
8.7 Improving the Noise of a Mechanical Compressor
8.8 Refrigerator Compressor Subjected to Repeated Loads
8.9 Lifetime of a Localized Designed Pneumatic Cylinder in an Automatic Assembly Line
8.10 Drawer System in a French Refrigerator
8.11 Improving the Lifetime of a Hinge Kit System (HKS) in a Refrigerator