Crystalline Metal Oxide Catalysts

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book introduces the innovatively advanced crystalline metal oxide catalysts that have multi-catalytic functions on the basis of spatially placed elements in crystal structure. With authors who are experts in their fields, the chapters of the book are organized according to catalytic function, on the basis of crystal structure. The book also covers the structure determination of micro–nano-sized metal oxide crystals that are now standard in most catalytic materials and new trends in catalyst development using materials informatics and catalytic informatics. The information contained here will guide researchers who are eager to carry out sustainable catalytic processes and ultimately to achieve a sustainable society in their quest for catalyst development.

Author(s): Wataru Ueda
Publisher: Springer
Year: 2022

Language: English
Pages: 397
City: Singapore

Preface
Contents
Contributors
1 Overview of Crystalline Metal Oxide Catalysts
1.1 General Introduction
1.1.1 Progress of Metal Oxide Catalyst Development: Toward Complexation and Crystalline State
1.1.2 Structural Classification of Complex Metal Oxide Catalysts
1.2 Structure Chemistry and Catalysis Chemistry of Crystalline Complex Metal Oxide Catalysts
1.2.1 Simple Metal Oxides with Catalytic Function
1.2.2 Crystalline Complex Metal Oxides with Catalytic Function
1.2.3 Synthetic Chemistry of Crystalline Complex Metal Oxide Catalysts
References
2 Catalysis Chemistry of Crystalline Complex Metal Oxide Catalysts
2.1 Catalysis Chemistry of Crystalline Complex Metal Oxides
2.1.1 Metastable State
2.1.2 Dynamic Reversible Phase Transfer Under Catalysis (MvK Mechanism)
2.1.3 Defect Structure and Ion-Conduction
2.1.4 Valence Control and Mixed Valence
2.1.5 Introducing Coordinatively Unsaturated State
2.1.6 Catalytic Collaboration among Constituting Elements and Interplay of Different Structural Phases
2.1.7 Crystal Facet Dependence of Catalytic Function
2.1.8 Catalysis based on Molecularity of Discrete Structure
2.1.9 Descriptors
2.2 Catalysis Chemistry in Complexity
2.2.1 Structure Difference Between Bulk and Surface of Complex Metal Oxides
2.2.2 Difficulty in Determination of Active Site Number on Metal Oxide Surface
2.2.3 Micro-Structure in Amorphous Complex Metal Oxides
2.2.4 Structural Surface Material Formation
References
3 Polyoxometalate Unit Assembling for Crystal Catalysts
3.1 Introduction
3.1.1 Polyoxometalates
3.1.2 Structure of Polyoxometalates
3.1.3 Scope and Limitations
3.2 Design of Polyoxometalate Crystals
3.2.1 Molecule Structure
3.2.2 Polyoxometalate Unit-Based Crystal
3.3 Perspective
References
4 Mo-V-Based Crystalline Complex Metal Oxide Catalysts
4.1 Introduction
4.2 Mo-V-Based Oxide Catalysts for Selective Oxidations
4.2.1 Development of Industrial Oxidation Catalysts
4.2.2 Evolution of Crystalline Mo3VOx Catalysts
4.3 Catalytic Property of Crystalline Mo3VOx
4.3.1 Catalysis Field based on Crystal Structure
4.3.2 Oxidation Catalysis for Ethane Oxidation
4.3.3 Catalytically Active Structure for Acrolein Oxidation
4.4 Conclusions and Future Outlook
References
5 All-Inorganic Zeolitic Octahedral Metal Oxides
5.1 General Introduction of Zeolitic Octahedral Metal Oxides
5.2 Material Synthesis
5.2.1 Conditions for Material Synthesis
5.2.2 Design of Framework
5.3 Advanced Structure Determination, Step by Step
5.3.1 Structure Determination Using Single Crystal X-ray Analysis
5.3.2 Structure Determination Using Powder X-ray Diffraction Analysis
5.3.3 Structure Confirmation Using Atomic Resolution Electron Microscopy
5.4 Typical Zeolitic Octahedral Metal Oxides
5.4.1 ε-Keggin POM-Based ZOMOs
5.4.2 Hexagon Unit-Based ZOMOs
5.4.3 Cubane Unit-Based ZOMOs
5.5 Properties and Applications
5.5.1 Microporosity for Adsorption and Separation
5.5.2 Redox Property for Catalysis and Battery
5.5.3 Acidity for Catalysis
5.5.4 Ion-Exchange Property for Ion Removal
5.6 Perspective
References
6 Position Control of Catalytic Elements in Zeolites
6.1 Introduction and the Recent Trend in Zeolite Catalysis
6.1.1 Zeolite Catalysts with Well-Controlled Position of Active Sites
6.1.2 Determination of the Position of Catalytic Active Sites
6.1.3 Recent Trend in Zeolite Catalysis
6.2 Control and Evaluation of the Location of Heteroatom in the Zeolite Framework
6.2.1 Aluminosilicates
6.2.2 Metallosilicates
6.3 Location, State, Size, and Reactivity of Metal Species in Zeolite
6.3.1 Metal Cations in Zeolite
6.3.2 Metal Clusters and Oxides in/on Zeolite
6.4 Conclusions and Outlook
References
7 Crystalline Support
7.1 Introduction
7.1.1 Structural Effect of the Support on Supported Metal Particles
7.1.2 Electronic Effect of the Support on Supported Metal Particles
7.2 12CaO7Al2O3 Electride
7.2.1 Structural Properties of 12CaO·7Al2O3 Electride
7.2.2 Catalytic Applications of 12CaO·7Al2O3 Electride
7.3 Metal Oxide Bearing Heteroanion
7.3.1 Oxyhydride
7.3.2 Oxynitride-Hydride
References
8 Crystalline Metal Oxide Catalysts for Organic Synthesis
8.1 Catalyst Design of Crystalline Metal Oxides for Organic Synthesis
8.2 Synthesis Method of Crystalline Metal Oxides
8.3 Catalytic Application to Liquid-Phase Organic Reactions
8.3.1 Simple Oxide
8.3.2 Perovskite
8.3.3 Spinel
8.3.4 Metal Phosphate
8.3.5 Others
8.4 Concluding Remarks
References
9 Crystal and Band Engineering in Photocatalytic Materials
9.1 History of Photocatalytic Water Splitting Using Metal Oxide-Based Semiconductors
9.2 Crystal Engineering of Metal Oxides for Efficient Water Splitting Under UV Light
9.2.1 Layered Metal Oxides with Cation-Exchangeable Interlayer Spaces
9.2.2 Metal Oxides with Tunnel Structures
9.2.3 Highly Efficient Water Splitting on Perovskite-Type Metal Oxides
9.3 Band Engineering of Metal Oxides for Achieving Visible-Light-Induced Water Splitting
9.3.1 The Difficulty of Achieving Visible-Light-Induced Water Splitting Using Pristine Metal Oxides
9.3.2 Cation-Doping into Perovskite-Type Metal Oxides
9.3.3 Valence Band Engineering via s–p Interaction
9.3.4 Mixed-Anion Oxides for Z-scheme Water Splitting Under Visible Light
9.3.5 Mixed-Anion Oxides for One-Step Water Splitting Under Visible Light
9.3.6 Layered Oxyhalides as Promising Photocatalysts for Visible-Light-Induced Water Splitting
9.4 Conclusions and Perspective
References
10 Metal Oxide Catalysts in Relation to Environmental Protection and Energy Conversion
10.1 General Background for Environmental Protection and Energy Conversion
10.2 CO and VOC Oxidations
10.2.1 Overview
10.2.2 Reaction Mechanism (Mars-Van Krevelen Mechanism)
10.2.3 CeO2-Based Materials
10.2.4 Perovskite Oxides
10.2.5 Other Metal Oxides
10.3 NO Oxidation and Reduction
10.3.1 Overview
10.3.2 Catalyst Materials
10.4 Metal Oxides with Oxygen Storage Performance
10.4.1 Overview
10.4.2 CeO2–ZrO2 Solid Solution
10.4.3 Perovskite and Layered Perovskite Oxides
10.4.4 Brownmillerite Oxides
10.4.5 Other Nonstoichiometric Oxides
10.5 CH4 Conversion: Oxidative Coupling of Methane
10.5.1 Overview
10.5.2 Existing Potential Catalysts and OCM Reaction Mechanism
10.5.3 Recent Progress in the Development of Complex Metal Oxide Catalysts
References
11 Metal Oxide Catalysts for the Valorization of Biomass-Derived Sugars
11.1 Introduction
11.1.1 Need of Renewable Resources
11.1.2 Biomass
11.1.3 Metal Oxide Materials
11.2 Lewis Acidic Amorphous Oxide and Determination of Structure–activity Relationship
11.2.1 Bulk and Surface Properties of Nb2O5
11.2.2 Sugar Dehydration with Niobic Acid
11.2.3 Sugar Dehydration with Niobium Phosphate
11.2.4 Sugar Dehydration with Amorphous and Low-Crystalline Ti-Based Oxides
11.2.5 Limitations of Amorphous and Low-Crystalline Metal Oxide Catalysts
11.3 Crystalline Metal Oxides for the Conversion of Biomass Derived Compounds
11.3.1 Biomass Conversion with Crystalline Nb-Based Oxides
11.3.2 Biomass Conversion with Crystalline Ti-Based Oxides
11.3.3 Biomass Conversion with W-based Oxides
11.4 Conclusion and Outlook
References
12 The Rise of Catalysts Informatics
12.1 Introduction
12.1.1 Concept of Catalysts Informatics
12.1.2 The Role of Informatics in Catalysis
12.2 Catalysts Data
12.2.1 The Growing Importance of Data
12.2.2 Difficulties with Existing Data
12.2.3 Structuring Data Through Ontology
12.3 Designing Heterogeneous Catalysts via Machine Learning
12.4 Catalysts Informatics Platform
12.4.1 Concept of Platform
12.4.2 Catalysts Acquisition by Data Science
References
13 Recent Advances in Density Functional Theory (DFT) and Informatics Studies on Metal Oxide Surfaces
13.1 Introduction
13.2 DFT-Based Descriptors of Metal Oxides for Catalysis Informatics
13.2.1 d-Band Center for Molecular Adsorption on Metal Surfaces
13.2.2 Scaling Relationships Between Adsorption Energies
13.2.3 Oxygen Vacancy Formation Energy (EOvac) as a Descriptor for Catalytic Behavior of Metal Oxides
13.2.4 Acid–Base Properties of Metal Oxides
13.3 Modeling of Metal Oxide Surfaces
13.3.1 The Polarity of a Surface
13.3.2 Automated Generation of Nonpolar Slabs
13.3.3 Applications of Surface Model Generation
13.4 Molecular Adsorption on Metal Oxide Surface: Perspectives from Frontier Orbital Theory and Catalysis Informatics
13.4.1 A Frontier Orbital Theory Study on Adsorption Behavior of Various Molecules on TiO2 Surfaces
13.4.2 Statistical Analysis of Molecular Adsorption on the TiO2 Perfect Surfaces
13.4.3 Adsorption Behavior on the TiO2 Surface with O Vacancy
References