Cool Thermodynamics: Engineering and Physics of Predictive, Diagnostic and Optimization Methods for Cooling Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The book is geared towards those interested in the engineering and physics of air-conditioning and refrigeration devices (chillers). Analytic thermodynamic models are developed for a wide variety of cooling systems and a broad range of operating conditions. The book is also suitable as part of a university course on cooling systems.

Author(s): Jeffrey M. Gordon, Kim Choon Ng
Publisher: Cambridge International Science Publishi
Year: 2000

Language: English
Commentary: 54934
Pages: 276

Contents......Page 7
Preface......Page 12
NOMENCLATURE......Page 14
CONVERSION TABLE......Page 17
A. YOUR INTEREST IN COOLING SYSTEMS......Page 18
B. COOLING BASICS......Page 19
C. UNIVERSAL ASPECTS OF CHILLER BEHAVIOR......Page 23
D1. The issues addressed and the predictions validated......Page 25
D2. The readership: toward whom the book is geared......Page 26
E. THE READER’S BACKGROUND......Page 31
A. INTRODUCTION......Page 32
B1. Reversible Carnot refrigeration cycle......Page 33
B2. The discrepancy between physical idealizations and engineering realities......Page 36
B3. Real vapor-compression cycles......Page 43
B4. Reciprocating Chillers......Page 48
B5. Centrifugal chillers......Page 49
B6. Screw compressor chillers......Page 51
B7. Refrigerants......Page 53
C1. Absorption basics and absorption versus mechanical chillers......Page 54
C2. Working pairs (refrigerant solutions) and practical considerations......Page 57
C3. COP for absorption machines......Page 59
C5. Series versus parallel configurations......Page 61
C6. Derivation of fundamental bounds for absorption COP......Page 62
D. THERMOACOUSTIC CHILLER......Page 67
E. THERMOELECTRIC CHILLER......Page 68
B1. Wherefore standards?......Page 71
B3. What constitutes commercial standards?......Page 72
D. MEASUREMENT ACCURACY, INSTRUMENTATION AND EXPERIMENTAL UNCERTAINTY......Page 76
E. STANDARD FOR WATER-COOLED MECHANICAL CHILLERS......Page 82
F. ABSORPTION CHILLER STANDARD......Page 83
G1. Mechanical heat pumps......Page 85
H1. Why bother with alternative test rig designs?......Page 86
H4. Mixing process for a heat pump......Page 87
A. ENTROPY PRODUCTION......Page 90
B. EXAMPLE FOR MECHANICAL CHILLERS......Page 92
C. EXAMPLE FOR ABSORPTION CHILLERS......Page 93
D. PROCESS AVERAGE TEMPERATURE......Page 94
E1. The first two laws of thermodynamics and general modeling of irreversibilities......Page 101
E2. How COP is comprised of contributions from individual classes of irreversibility......Page 104
E3. A natural form for chiller characteristic plots......Page 107
F2. Derivation of the characteristic curve for chillers and heat pumps......Page 108
F3. Process average temperatures and general expressions for COP......Page 110
F4. Heat transformers......Page 112
G. VALIDITY OF THE CONSTANCY OF INTERNAL LOSSES......Page 113
H. PROCESS AVERAGE TEMPERATURE AND EXERGY ANALYSIS......Page 114
A. THE VALUE OF EXPRESSING CHILLER PERFORMANCE IN TERMS OF COOLANT TEMPERATURES......Page 115
B1. The full expression......Page 116
B2. The approximate formula......Page 120
B3. Qualifications about the regression fits......Page 121
C1. Absorption chillers and heat pumps......Page 122
C2. Absorption heat transformers......Page 123
C3. Absorption chiller performance curve......Page 124
A. AIMS OF THE CHAPTER......Page 126
B2. Theory versus experiment......Page 127
B3. A qualification: the importance of measurement accuracy......Page 132
C. WHERE ACTUAL CHILLER PERFORMANCE LIES ON THE CHARACTERISTIC CURVE......Page 134
D. CONSTRAINED CHILLER OPTIMIZATION FOR LIMITED HEAT EXCHANGER SIZE......Page 135
E. HIGHLY CONSTRAINED OPTIMAL DESIGNS: AIR-COOLED SPLIT RECIPROCATING CHILLERS......Page 137
A. GLOBAL OPTIMIZATION WITH RESPECT TO FINITE TIME AND FINITE THERMAL INVENTORY......Page 142
B. HOW FINITE TIME ENTERS GOVERNING PERFORMANCE EQUATIONS......Page 144
C. PERFORMING THE GLOBAL OPTIMIZATION......Page 146
D. COMPARISON WITH CHILLER EXPERIMENTAL DATA......Page 148
E. EQUIVALENCE OF MAXIMIZING COP AND MINIMIZING UNIVERSAL ENTROPY PRODUCTION......Page 151
F. CLOSURE......Page 152
A. BACKGROUND TO THE PROBLEM......Page 154
B. ADAPTING THE ANALYTIC CHILLER MODEL TO INCORPORATE COOLANT FLOW RATES......Page 157
C. EXPLICIT ACCOUNTING FOR THE INFLUENCE OF COOLANT FLOW RATE......Page 158
D. EXPERIMENTAL DETAILS......Page 160
E. APPLICATION OF THE MODEL AND EXPERIMENTAL CONFIRMATION......Page 162
F. CLOSURE......Page 164
A. OBJECTIVES AND MOTIVATION......Page 166
B3. Absorption chillers and heat pumps: diagnostics and design conclusions......Page 168
B4. HEAT TRANSFORMER ANALYSIS AND DIAGNOSTICS......Page 173
A. INTRODUCTION......Page 176
B2. Heat exchanger effects: expressing results in terms of coolant temperatures......Page 178
B3. Modeling internal losses and the final 3-parameter formula......Page 180
C1. Validating predicted functional dependences and accurate COP correlations......Page 182
C2. Limits to the model......Page 185
D1. Details of a diagnostic case study......Page 186
D2. Performance data, model predictions and the truth about part-load behavior......Page 189
D3. The diagnostic case study from the perspective of the fundamental chiller model......Page 192
E1. Basic thermodynamic behavior......Page 194
E2. Adapting the quasi-empirical model to absorption chillers......Page 195
E3. Comparing model predictions against experimental data......Page 197
E4. Case study on the effect of surfactant......Page 198
E5. The extended performance curve......Page 202
F2. Thermoacoustic chillers......Page 203
F3. Thermoelectric chillers......Page 204
F4. Unique thermodynamic aspects of thermoelectric chillers......Page 206
A. MISSING MOST OF THE PHYSICS AND ITS CONSEQUENCES......Page 207
B. PREDICTING COP AS A FUNCTION OF COOLING RATE......Page 209
C. ANALYSIS WITH DATA FROM RECIPROCATING CHILLERS......Page 210
D. ANALYSIS WITH DATA FROM ABSORPTION SYSTEMS......Page 211
E. ARE ENDOREVERSIBLE MODELS FOR HEAT ENGINES ANY BETTER?......Page 213
A. PEEKING INTO THE BLACKBOX......Page 215
B2. Experimental details and thermodynamic calculations......Page 217
B3. Observations about internal dissipation......Page 218
B4. Repercussions for diagnostics and optimization......Page 220
C1. The nature of the study Absorption chillers also operate......Page 221
C2. About regenerative absorption chillers......Page 222
C3. Experimental details......Page 224
C4. Calculation of the PATs and internal entropy production......Page 228
C6. Quantitative results for internal dissipation and the implications......Page 229
C7. Qualifications......Page 234
A. BACKGROUND......Page 236
B. PAT AND THE PERFORMANCE CHARACTERISTIC FOR MECHANICAL CHILLERS......Page 239
C. PAT–ENTROPY DIAGRAM FOR MECHANICAL CHILLERS......Page 240
D. PAT AND THERMODYNAMIC DIAGRAMS FOR ABSORPTION CHILLERS......Page 242
E. THE EXAMPLE OF THE THERMOELECTRIC CHILLER......Page 247
A. TYING UP LOOSE ENDS......Page 249
B. THE THERMOELECTRIC CHILLER AS A CLEAR CUT CASE......Page 250
C. SCREW-COMPRESSOR CHILLERS......Page 251
E. ADSORPTION CHILLERS......Page 254
F1. Device description and how vortex motion creates a cooling effect......Page 258
F2. Chiller performance characteristics......Page 259
F4. The external perspective of the chiller......Page 260
F5. The internal perspective of the chiller......Page 261
F6. Characteristic chiller plots and their interpretation......Page 263
REFERENCES......Page 264
Index......Page 271