Comprehensive Organometallic Chemistry IV, 15-Volume Set

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Comprehensive Organometallic Chemistry, Fifteen Volume Set is the market-leading resource covering all areas of this critical sub-discipline of chemistry. Divided into 15 clear sections, it provides expert coverage of the synthesis, structures, bonding and reactivity of all organometallic compounds, including the mechanisms of the reactions. Applications of organometallic chemistry, such as the role of these compounds as reagents and catalysts for organometallic transformations, and their participation in bioorganometallic chemistry, is then covered. This is a vibrant area, as illustrated by the fact that the 2001, 2005 and 2010 Nobel prizes in Chemistry are all concerned with organometallic chemistry. This new edition will therefore again provide an invaluable and efficient learning resource for all researchers and educators looking for up-to-date analysis of a particular aspect of organometallic chemistry.

Author(s): Gerard Parkin, Karsten Meyer, Dermot O'Hare
Edition: 4
Publisher: Elsevier
Year: 2022

Language: English
Pages: 9358
City: Amsterdam

Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of Volume 1
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 1
Preface
Introduction: Volume I
Models for Understanding Main Group and Transition Metal Bonding
1.02.1. Introduction
1.02.2. Primogenic repulsion: Orbital size effects in bonding in the periodic table
1.02.3. The 2-center 2-electron heterocovalent bond and polar covalence theory
1.02.4. The 2-center 2-electron dative bond
1.02.5. Complementarity of qualitative hybridization theory and molecular orbital theory
1.02.6. Lone pair bond weakening and its influence on organometallic chemistry
1.02.7. Beyond the 2-center 2-electron bond
1.02.8. Examples of using Bent's rule, hybridization, and structure in the main group
1.02.9. Hybridization theory and the transition metals
1.02.10. Practical evaluation of metal-ligand bond interactions for applications in catalysis
1.02.11. Concluding remarks
Acknowledgment
References
Reversible Homolysis of Metal-Carbon Bonds
1.03.1. Introduction
1.03.2. General aspects of homolytic metal-carbon bond cleavage
1.03.2.1. Energy profile for thermal activation
1.03.2.2. Photoinduced cleavage
1.03.2.3. The ``persistent radical effect´´
1.03.2.4. Thermal stability
1.03.2.5. Bond cleavage activation parameters
1.03.2.6. Bond formation activation parameters
1.03.2.7. Calorimetric studies of metal-carbon bond strengths
1.03.2.8. Other methods to measure BDFEs/BDEs
1.03.2.8.1. Equilibrium measurements
1.03.2.8.2. Decomposition kinetics
1.03.2.8.3. Electrochemical simulations
1.03.2.9. Computational studies
1.03.3. Reversible metal-carbon bond homolysis in biochemistry
1.03.3.1. Vitamin B12 and derivatives: General aspects
1.03.3.2. Coenzyme B12-dependent enzymatic reactions involving cobalt(III)-carbon bond homolysis
1.03.3.3. Radical S-adenosyl-l-methionine
1.03.3.4. Metal-carbon bond homolysis in other enzymes
1.03.4. Reversible metal-carbon bond homolysis in metal-mediated and -catalyzed organic transformations
1.03.4.1. General aspects of radical reactions in the presence of metals
1.03.4.2. Metal-based radical generations
1.03.4.2.1. By reduction of a polar R-Y bond
1.03.4.2.1.1. By atom/group transfer (AT/GT)
1.03.4.2.1.2. By electron transfer (ET)
1.03.4.2.2. By H atom transfer (HAT) to an alkene
1.03.4.2.3. By metal-carbon bond homolysis
1.03.4.3. Role of metal-carbon bonds in radical reactions
1.03.4.3.1. Hydrogenation
1.03.4.3.2. Dehydrometallation
1.03.4.3.3. Alkyl-hydride reductive elimination
1.03.4.3.4. Dialkyl reductive elimination
1.03.4.3.5. Alkyl transfer to an electrophile
1.03.4.3.6. Oxidation
1.03.4.3.7. Transmetalation
1.03.5. Reversible metal-carbon bond homolysis in controlled radical polymerization
1.03.5.1. General aspects of organometallic-mediated radical polymerization (OMRP)
1.03.5.2. Titanium
1.03.5.3. Vanadium
1.03.5.4. Chromium
1.03.5.5. Molybdenum
1.03.5.6. Manganese and rhenium
1.03.5.7. Iron
1.03.5.8. Ruthenium and osmium
1.03.5.9. Cobalt
1.03.5.9.1. Porphyrin systems
1.03.5.9.2. β-Diketonate systems
1.03.5.9.3. Other planar macrocyclic systems
1.03.5.9.4. Other ligand systems
1.03.5.10. Rhodium
1.03.5.11. Copper
Acknowledgment
References
Very Low Oxidation States in Organometallic Chemistry
Nomenclature
1.04.1. Preface
1.04.1.1. Main-group (organo)metal polyanions
1.04.1.2. Mononuclear metal anions
1.04.2. Organometallic compounds with negative oxidation states of the transition metal
1.04.2.1. Comment on oxidation state formalism and redox non-innocence
1.04.2.2. Carbonyl metallates
1.04.2.2.1. Reactivity of anionic carbonyl metallates
1.04.2.3. Isonitrile-based metallates
1.04.2.4. Alkene metallate complexes
1.04.2.4.1. Homoleptic arene-based metallate complexes
1.04.2.4.2. Synthesis and structure of arene metallates
1.04.2.4.3. Reactivity
1.04.2.5. Carbene-based metallates
1.04.2.6. Honorable mentions
1.04.3. Concluding remarks and outlook
Acknowledgment
References
Very High Oxidation States in Organometallic Chemistry
Abbreviations
1.05.1. Introduction
1.05.2. Metal alkyl complexes
1.05.3. Metal aryl complexes
1.05.4. Alkyl- and aryl complexes with oxo, imido and nitrido ligands
1.05.5. Carbenes and carbynes
1.05.6. Cyclopentadienyl complexes
1.05.7. Hydride
1.05.8. Silyl chemistry
1.05.8.1. Halogenation reactions
1.05.9. One-electron oxidizing agents
1.05.10. Conclusion
Acknowledgment
References
Characterization Methods for Paramagnetic Organometallic Complexes
1.06.1. Introduction
1.06.2. Electron paramagnetic resonance (EPR) spectroscopy
1.06.2.1. Introduction
1.06.2.2. Theory
1.06.2.3. Continuous wave (CW) EPR spectroscopy
1.06.2.3.1. X-band EPR spectroscopy
1.06.2.3.2. High field EPR
1.06.2.4. Pulsed EPR spectroscopy
1.06.3. Magnetic circular dichroism (MCD) spectroscopy
1.06.3.1. Introduction
1.06.3.2. Theory
1.06.3.3. Applications
1.06.4. X-ray absorption spectroscopy
1.06.4.1. Introduction
1.06.4.2. Theory
1.06.4.3. Applications
1.06.5. Nuclear magnetic resonance
1.06.5.1. Introduction
1.06.5.2. Theory
1.06.5.3. Applications
1.06.6. Conclusion
References
Computational Methods in Organometallic Chemistry
1.07.1. Introduction
1.07.2. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT)
1.07.2.1. Functional
1.07.2.2. Basis set
1.07.2.3. Additional considerations
1.07.2.4. Beginning calculations
1.07.2.4.1. Geometries and geometry optimization
1.07.2.4.2. Single point calculation
1.07.2.4.3. Software and common programs
1.07.2.5. Closed Shell systems and restricted Kohn-Sham (RKS)
1.07.2.6. Open Shell systems and unrestricted Kohn-Sham (UKS)
1.07.2.7. Broken symmetry calculations
1.07.2.7.1. Case study 1: Broken symmetry calculations of (iPrPDI)FeN2
1.07.2.8. Determining the correct solution
1.07.2.9. F-elements
1.07.2.10. Limitations of DFT
1.07.3. Ab initio methods
1.07.3.1. Case study 2: Multiconfigurational calculations of an iron nitrosyl complex
1.07.4. Configuration interaction/multiplet calculations
1.07.4.1. Simple configuration interaction model for spectroscopy
1.07.4.2. Charge transfer model for spectroscopy
1.07.4.2.1. Case study 3: Multiplet theory for quantifying lanthanide covalency
1.07.5. Experimental applications
1.07.5.1. Benchmarking computations with experimental data
1.07.5.2. UV-visible spectroscopy
1.07.5.2.1. Case study 4: Calculated photodynamics and UV-visible spectroscopy in a ruthenium nitrosyl complex
1.07.5.3. Infrared spectroscopy
1.07.5.3.1. Case study 5: DFT calculations of infrared spectra for iron nitrosyl complexes
1.07.5.4. Nuclear magnetic resonance spectroscopy
1.07.5.4.1. Case study 6: Computationally predicting olefin metathesis intermediates with 13C NMR spectroscopy
1.07.5.5. Electron paramagnetic resonance spectroscopy
1.07.5.5.1. Computational methods for electron paramagnetic resonance spectroscopy
1.07.5.5.2. Case study 7: Electron paramagnetic resonance spectroscopy of Ti3+-Al and Th3+-Al bimetallics
1.07.5.6. Magnetism
1.07.5.6.1. Case study 8: Electronic structures of plutonium single molecule magnets
1.07.5.7. Mössbauer spectroscopy
1.07.5.7.1. Computational methods for Mössbauer spectroscopy
1.07.5.7.2. Case study 9: Mössbauer spectroscopy of (iPrPDI)Fe(N2)2
1.07.5.8. X-ray absorption spectroscopy (XAS)
1.07.5.8.1. Computational methods for X-ray absorption spectroscopy
1.07.5.8.2. Case study 10: Ni K-edge X-ray absorption spectroscopy of (iPr2NNF6)NiNO
1.07.5.8.3. Case study 11: Ligand K-edge X-ray absorption spectroscopy for evaluating lanthanide covalency
1.07.5.9. X-ray emission spectroscopy (XES)
1.07.5.9.1. Case study 12: Evaluating XES capabilities for probing NO coordination modes and reduction
1.07.6. Mechanism
1.07.6.1. Computational methods for calculating reaction mechanisms
1.07.6.1.1. Case study 13: Mechanism of CCO2 bond formation at Cu, Rh and Pd
1.07.7. Current limitations and outlook
1.07.7.1. Case study 14: The ever elusive Grignard reaction
Acknowledgment
References
f-Element Organometallic Single-Molecule Magnets
1.08.1. Introduction
1.08.1.1. Single-molecule magnetism
1.08.2. Single-molecule magnetism in lanthanide organometallics
1.08.2.1. Lanthanide metallocene single-molecule magnets
1.08.2.1.1. SMMs based on [Cp2Ln(μ-X)]n metallocene units
1.08.2.1.2. Lanthanide half-sandwich complexes as SMMs
1.08.2.1.3. Lanthanide metallocene SMMs with radical bridging ligands
1.08.2.1.4. Cationic dysprosium metallocene SMMs [(CpR)2Dy]+
1.08.2.2. Lanthanide single-molecule magnets based on cyclooctatetraene ligands
1.08.2.3. Organometallic lanthanide SMMs containing 4-, 6-, or 7-membered rings
1.08.2.3.1. Lanthanide SMMs with η4-cyclobutadienyl ligands
1.08.2.3.2. Lanthanide SMMs with η6-arene or η7-cycloheptatrienyl ligands
1.08.2.4. Lanthanide organometallic SMMs based on σ-bonded ligands
1.08.2.5. Single-molecule magnetism in actinide organometallics
1.08.3. Conclusions and outlook
Acknowledgment
References
Electrochemistry in Organometallic Chemistry
1.09.1. Introduction
1.09.2. Developments in electrodes, materials, and methods
1.09.2.1. Early electrochemical studies
1.09.2.2. Major advances in materials and measurement
1.09.2.3. Modern electrochemical methods and techniques
1.09.3. Chemical reactivity at the working electrode surface
1.09.3.1. Electrochemically and chemically reversible electron transfers
1.09.3.2. Coupled chemical reactions
1.09.3.3. EC mechanism
1.09.3.4. ECC mechanism
1.09.3.5. CE mechanism
1.09.3.6. ECE mechanism
1.09.3.7. Substitution mechanism
1.09.3.8. DISP mechanism
1.09.4. Using electrochemistry to explore chemical reactivity with stoichiometric redox reagents
1.09.4.1. Synthesis via controlled potential electrolysis
1.09.4.2. Synthesis via chemical redox reagents
1.09.4.3. Literature examples of combined use of cyclic voltammetry and chemical redox reagents
1.09.5. Fundamental concepts of organometallic electrocatalysis
1.09.5.1. Motivation for studying organometallic electrocatalysts in the context of energy science
1.09.5.2. Investigating organometallic electrocatalysis using CV
1.09.5.2.1. Electrocatalytic parameters and thermodynamic overpotential determined by CV
1.09.5.2.2. Kinetic considerations in electrocatalysis: Foot of the wave analysis
1.09.5.2.3. Distinguishing homogenous from heterogeneous catalysis with electrochemical methods
1.09.5.3. Investigating organometallic electrocatalysis using controlled potential electrolysis
1.09.5.4. Product analysis in organometallic electrochemistry
1.09.6. Applications of organometallic electrocatalysis for select transformations
1.09.6.1. Electrocatalytic water oxidation
1.09.6.2. Electrocatalytic ammonia oxidation
1.09.6.3. Electrocatalytic proton reduction
1.09.6.4. Electrocatalytic carbon dioxide reduction
1.09.6.5. Electrocatalytic dinitrogen reduction
1.09.6.6. Electrocatalytic organic transformations
1.09.6.7. Analyses for benchmarking electrocatalysts
1.09.7. Conclusion
Acknowledgment
References
Organometallic Photosensitizers
Nomenclature
1.10.1. Introduction
1.10.1.1. Excited state processes
1.10.1.2. Electron transfer photosensitization
1.10.1.2.1. Photoredox catalysis
1.10.1.3. Energy transfer photosensitization
1.10.1.3.1. Energy transfer initiated photocatalysis
1.10.2. Zirconium photosensitizers
1.10.3. Group 6 photosensitizers
1.10.4. Group 8 photosensitizers
1.10.5. Iridium photosensitizers
1.10.5.1. Dimeric cyclometalated iridium complexes
1.10.5.2. Homoleptic tris-cyclometalated iridium complexes
1.10.5.3. Cationic bis-cyclometalated iridium complexes
1.10.5.3.1. Complexes with bipyridine-derived ancillary ligands
1.10.5.3.2. Carboxy-substituted complexes for solar cells
1.10.5.3.3. Cationic complexes with quinoline-derived cyclometalating ligands
1.10.5.3.4. Cationic bis-cyclometalated iridium photocatalytic dyads
1.10.5.3.5. Complexes with alternative diimine ancillary ligands: enhanced light absorption and charge separation
1.10.5.3.6. Alternative cyclometalating ligands for enhanced light absorption and charge-transfer lifetimes
1.10.5.4. Charge-neutral heteroleptic bis-cyclometalated iridium complexes
1.10.5.4.1. Complexes with acac ancillary ligands
1.10.5.4.2. Bis-cyclometalated iridium complexes with 2-picolinate ancillary ligands
1.10.5.4.3. Bis-cyclometalated iridium complexes with electron-rich ancillary ligands
1.10.5.5. Bis-cyclometalated iridium complexes with N-heterocyclic carbene (NHC)-derived ancillary ligands
1.10.5.6. Bis-cyclometalated iridium complexes for enantioselective photoredox transformations
1.10.5.7. Bis-cyclometalated iridium complexes with monodentate ancillary ligands
1.10.5.8. Cyclometalated iridium complexes with tridentate ligands
1.10.5.9. Summary and outlook
1.10.6. Rhodium photosensitizers
1.10.7. Palladium photosensitizers
1.10.8. Platinum photosensitizers
1.10.9. Coinage metal photosensitizers
1.10. Summary and conclusions
Acknowledgment
References
Organometallic Chemistry of NHCs and Analogues
1.11.1. Introduction
1.11.2. Overview of N-heterocyclic carbenes
1.11.3. Structures and properties of NHCs
1.11.4. Electronic properties of NHCs
1.11.4.1. Tolman electronic parameter
1.11.4.2. Lever electronic parameter
1.11.4.3. NMR chemical shift methods
1.11.5. Quantifying the steric properties of NHCs
1.11.6. Tuning the electronic and steric properties of NHCs by structure modification
1.11.6.1. NHCs with various nitrogen substituents
1.11.6.2. NHCs with diverse ring size and backbone structure
1.11.6.3. NHCs having different heterocycles
1.11.7. Chelating NHC ligands
1.11.8. Coordination compounds of NHCs
1.11.8.1. Nature of the metal-carbon(carbene) bonds
1.11.8.2. Transition-metal NHC complexes
1.11.8.3. NHCs in main group element chemistry
1.11.9. Reactions on NHC ligands
1.11.10. Organometallic chemistry of NHC analogues
1.11.10.1. Group 13 element(I) N-heterocycles
1.11.10.2. Group 14 element(II) N-heterocycles
1.11.10.3. Group 15 element(III) N-heterocycles
1.11.11. Summary
Acknowledgment
References
Ligands Featuring Covalently Tethered Moderate to Weakly Coordinating Anions
1.12.1. Ligands featuring covalently tethered moderate to weakly coordinating anions
1.12.2. Systems featuring proximal sulfonate anions
1.12.2.1. Phosphine-sulfonate ligands
1.12.2.1.1. Palladium(II) complexes
1.12.2.1.2. Nickel(II) complexes
1.12.2.2. NHC-sulfonate ligands
1.12.3. Borates and aluminates
1.12.3.1. Scorpionates and related bidentate systems
1.12.3.1.1. Polypyrazolyl borates
1.12.3.1.1.1. Ligand synthesis
1.12.3.1.1.2. Electronics
1.12.3.1.1.3. Coordination chemistry/reactivity
1.12.3.1.1.4. Related bidentate and tridentate aluminates
1.12.3.1.2. Other N-donor borates
1.12.3.1.2.1. Heteroscorpionates
1.12.3.1.3. P-Donor scorpionates and related bidentate systems
1.12.3.1.3.1. Ligand synthesis
1.12.3.1.3.2. Electronics
1.12.3.1.3.3. Reactivity and coordination chemistry
1.12.3.1.4. N- and S-Donor scorpionates and related bidentate systems
1.12.3.1.4.1. Coordination chemistry/reactivity
1.12.3.1.5. Scorpionates and related bidentate systems featuring NHCs
1.12.3.1.5.1. Ligand synthesis
1.12.3.1.5.2. Electronics
1.12.3.1.5.3. Coordination chemistry/reactivity
1.12.3.1.6. Mixed NHC borates
1.12.3.1.6.1. Scorpionates and related bidentate systems with imidazole-2-thione borates
1.12.3.1.6.1.1. Ligand synthesis
1.12.3.1.6.1.2. Coordination chemistry/reactivity
1.12.3.1.6.2. Ansa-bridged metallocenes
1.12.3.1.6.2.1. Ligand synthesis
1.12.3.1.6.2.2. Coordination chemistry/reactivity
1.12.3.1.7. Mixed Cp systems
1.12.3.2. Diimines and related systems
1.12.3.2.1. β-Diketiminate platforms and related systems
1.12.3.2.2. Miscellaneous ligand platforms
1.12.3.3. Monodentate ligands with proximal and distal borate ligand substituents
1.12.3.3.1. Mono-NHC borates
1.12.3.3.1.1. Monodentate NHC ligands featuring other group 13 anions
1.12.3.3.1.2. Monodentate NHC's featuring proximal borates
1.12.4. closo-Boron and carborane anions as ligand substituents
1.12.4.1. closo-Dodecaborates as ligand substituents
1.12.4.2. Ligands featuring proximal B12 cages
1.12.4.3. Ligands with distal closo-dodecaborate substituents: Porphyrins, phthalocyanines, and cage complexes
1.12.4.4. Multifunctionalized closo-dodecaborate in ligands
1.12.4.5. closo-Carborane anions as ligand substituents
1.12.4.6. (Alkynyl/acetylide ligands)
1.12.4.7. closo-Carborane anions as ligand substituents for phosphines
1.12.4.8. Phosphine ligands in catalysis
1.12.4.9. N-Heterocyclic carbene ligands with anionic carborane substituents
1.12.5. Concluding remarks
References
Redox-Active Ligands in Organometallic Chemistry
1.13.1. Introduction
1.13.2. Redox-active ligands as electron reservoirs
1.13.2.1. Early transition metals
1.13.2.2. Late transition metals
1.13.2.3. Other metals
1.13.3. Modification of the Lewis acid-base properties through ligand-centered redox changes
1.13.4. Redox-active ligand-to-substrate single-electron transfer
1.13.5. Cooperative ligand-centered reactivity
1.13.6. Conclusion
Acknowledgment
References
Proton Responsive and Hydrogen Bonding Ligands in Organometallic Chemistry
Nomenclature
1.14.1. Introduction
1.14.1.1. Inspiration from nature
1.14.1.2. Which types of reactions are enhanced by metal-ligand bifunctional catalysts involving protic and hydrogen bond ...
1.14.1.3. Hydrogenation considerations
1.14.1.4. Which metals are used frequently for hydrogenation catalysis?
1.14.1.5. Considering the pKa value of the pendant proton
1.14.1.6. Ligand rigidity, vulnerability to rearrangement, and ring size
1.14.1.7. List of criteria for evaluating catalysts for enhancements with protic groups or hydrogen bonding groups
1.14.1.8. Which metals are used frequently for MLBC?
1.14.1.9. Overview: Ligand architectures
1.14.2. Noyori's catalyst and related systems with NH near the metal center
1.14.2.1. Noyori's catalyst and closely related Ru catalysts
1.14.2.2. Iridium catalysts with NH near the metal center
1.14.3. Shvo's catalyst and related systems with OH groups on a cyclopentadienyl ring
1.14.3.1. Shvo's catalyst and other closely related Ru catalysts
1.14.3.2. Iron analogues of Shvo's catalyst
1.14.3.3. Other metals for Shvo catalyst analogues
1.14.4. Pyridinol derived metal complexes as catalysts for hydrogenation and other reactions
1.14.4.1. Motivation and background
1.14.4.2. Ligands containing one pyOH group
1.14.4.3. Chelating ligands containing two pyOH groups
1.14.4.3.1. Early work: CO2 hydrogenation and other reactions
1.14.4.3.2. Recent work: Hydrogenation, dehydrogenation and related reactions
1.14.4.3.3. CO2 hydrogenation and related reactions
1.14.4.3.4. Electrocatalytic oxidation and reduction reactions
1.14.4.3.5. Summary of pyridinol based ligands for organometallic catalysis
1.14.5. Tridentate facial arrangements of hydrogen bond donors or acceptors
1.14.6. Proton responsive pincer ligands
1.14.7. Perspective
Acknowledgment
References
Introduction to the Organometallic Chemistry of Carbon Dioxide
1.15.1. Introduction
1.15.2. Properties of CO2 as a molecule
1.15.3. M-CO2 complexes
1.15.3.1. Insertion into M-H
1.15.3.2. Insertion into M-C
1.15.3.3. Insertion into M-N
1.15.3.4. Insertion into M-O
1.15.3.5. Metathesis
1.15.4. Homogeneous catalysis with CO2
1.15.4.1. Hydrogenation
1.15.4.2. Electrochemical reduction
1.15.4.3. Carboxylation
1.15.4.4. CO2 copolymerization
1.15.5. Conclusions and perspective
Acknowledgment
References
Alkane σ-Complexes
1.16.1. Introduction
1.16.1.1. Alkane σ-complexes in context
1.16.1.2. Synthesis of alkane σ-complexes
1.16.2. Alkane σ-complex characterization
1.16.2.1. Solution studies of alkane σ-complexes
1.16.2.1.1. Fast-spectroscopic observations
1.16.2.1.2. NMR spectroscopically observed alkane σ-complexes
1.16.2.2. Structurally characterized alkane σ-complexes
1.16.2.2.1. Single crystal X-ray diffraction (SCXRD)
1.16.2.2.2. Neutron diffraction studies
1.16.2.3. Alkane complexes studied computationally
1.16.3. Bonding trends in alkane σ-complexes
1.16.3.1. Bonding modes
1.16.3.2. Bonding distance and angles
1.16.3.3. Alkane complexes versus fluxional alkyl hydrides
1.16.3.4. Binding selectivity and dynamic exchange processes
1.16.4. Summary
References
Dinitrogen Binding and Functionalization
1.17.1. Introduction and scope
1.17.2. Synthesis and characterization of N2 complexes
1.17.2.1. General procedures and experimental considerations
1.17.2.2. Key techniques and pitfalls to avoid
1.17.2.3. Synthesis of metal-N2 complexes
1.17.2.3.1. From atmospheric dinitrogen
1.17.2.3.2. From azides and hydrazines
1.17.2.3.3. From nitride coupling
1.17.3. N2 and its interactions with metals
1.17.3.1. Special properties of dinitrogen
1.17.3.2. Weakening of dinitrogen upon binding; comment on ``activation´´
1.17.3.3. Periodic trends and binding modes of N2
1.17.3.3.1. End-on terminal (η1-N2Fig. 8)
1.17.3.3.2. End-on/end-on (μ-η1:η1-N2Fig. 10)
1.17.3.3.3. Side-on (η2-N2)
1.17.3.3.4. Side-on/side-on (μ-η2:η2-N2Fig. 14)
1.17.3.3.5. End-on/side-on (μ-η1:η2-N2)
1.17.3.3.6. N2 coordination to more than two metals
1.17.3.4. Supporting ligand environment
1.17.3.4.1. Steric effects
1.17.3.4.2. Ligand character
1.17.3.5. N2 splitting at transition metal complexes
1.17.3.5.1. N2 splitting to terminal nitrides
1.17.3.5.2. N2 splitting to bridging nitrides
1.17.4. Functionalization of N2
1.17.4.1. Forming NH bonds at coordinated N2
1.17.4.1.1. Protonation of N2
1.17.4.1.2. NH bonds from H2
1.17.4.1.3. Catalytic N2 reduction to NH3
1.17.4.1.4. NH bond strengths
1.17.4.1.5. Concerted PCET
1.17.4.2. Forming other bonds at coordinated N2
1.17.4.2.1. NSi bonds
1.17.4.2.2. NC bonds
1.17.4.2.3. NB bonds
1.17.4.2.4. Other N-X bonds
1.17.5. Summary and perspectives
Acknowledgment
References
Lewis Acid Participation in Organometallic Chemistry
Abbreviations
1.18.1. Introduction
1.18.2. Oxidative addition
1.18.2.1. Stoichiometric oxidative addition
1.18.2.2. Hydrocyanation
1.18.2.3. Hydroarylation and hydroalkylation
1.18.2.4. Carbocyanation
1.18.2.5. Cross-coupling
1.18.2.6. Cycloaddition
1.18.2.7. Carbonylation
1.18.3. Reductive elimination
1.18.3.1. Stoichiometric reductive elimination
1.18.3.2. Hydrocyanation
1.18.3.3. Decarbonylation
1.18.3.4. Cross-coupling
1.18.4. 1,1-Insertion
1.18.4.1. CO insertion
1.18.4.1.1. Stoichiometric CO insertion
1.18.4.1.2. CO hydrogenation
1.18.5. 1,2-Insertion
1.18.5.1. CO2 insertion
1.18.5.1.1. Stoichiometric CO2 insertion
1.18.5.1.2. CO2 reduction
1.18.5.1.3. Formic acid or methanol dehydrogenation
1.18.5.2. Carbonyl insertion
1.18.5.2.1. Ester or carboxylic acid hydrogenation
1.18.5.2.2. Amide hydrogenation to amines
1.18.6. Ligand addition or abstraction
1.18.6.1. Alkyl abstraction
1.18.6.1.1. Stoichiometric alkyl abstraction
1.18.6.1.2. Olefin polymerization
1.18.6.1.3. Olefin trimerization
1.18.6.2. Halogen abstraction or exchange
1.18.6.2.1. Stoichiometric halogen abstraction from metal bound CX bonds
1.18.6.2.2. Arylation of amides
1.18.6.3. Hydride abstraction
1.18.6.3.1. Stoichiometric hydride abstraction for hydricity determination
1.18.7. Ligand substitution
1.18.7.1. Stoichiometric ligand substitution
1.18.7.2. Olefin isomerization
1.18.7.3. Carbonylation
1.18.7.4. Alkene hydrogenation
1.18.7.5. CO2 hydrogenation
1.18.8. β-Hydride elimination
1.18.8.1. Stoichiometric β-hydride elimination
1.18.8.2. Acrylate synthesis
1.18.8.3. Allene carboxylation
1.18.9. 1,2-Addition
1.18.9.1. Stoichiometric 1,2-addition
1.18.9.2. H2 activation for hydrogenation
1.18.10. Conclusions
References
Organometallic Chemistry on Oxide Surfaces
1.19.1. Introduction
1.19.2. Oxide supports
1.19.2.1. Surface chemistry of silica
1.19.2.2. Surface chemistry of alumina
1.19.2.3. Surface chemistry of sulfated oxides
1.19.3. Reactions of organometallics with oxides by protonolysis
1.19.3.1. Reactions of organometallics with partially dehydroxylated silica
1.19.3.2. Reactions of organometallics with OH groups present on sulfated oxide surfaces
1.19.3.3. Factors affecting formation of SiOM or [M][oxide]
1.19.4. Reactivity of strained SiOSi bridges on dehydroxylated silica surfaces
1.19.5. Alkyl abstraction by Lewis sites on Al2O3
1.19.6. Heterolytic activation of CH bonds on Al2O3
1.19.7. Conclusion
Acknowledgment
References
Separation Strategies in Organometallic Catalysis
1.20.1. Introduction
1.20.2. Molecular catalyst immobilization on supports
1.20.2.1. Metal oxide supports
1.20.2.2. Carbon supports
1.20.2.3. Metal-organic frameworks
1.20.2.4. Polymer supports
1.20.2.5. Supported ionic liquid phase
1.20.2.6. Concluding remarks
1.20.3. Multiphase strategies for catalyst separation
1.20.3.1. Immobilization in polar and non-polar phases
1.20.3.2. Immobilization in ionic liquids
1.20.3.3. Fluorous biphasic catalysis
1.20.3.4. Thermomorphic multicomponent solvent systems
1.20.3.5. Concluding remarks
1.20.4. Conclusion and outlook
References
Impurities in Organometallic Catalysis
1.21.1. Introduction
1.21.2. Historical perspective
1.21.3. Impurities catalyze the reaction
1.21.3.1. Introduction
1.21.3.2. Transition-metal catalyzed cross-coupling reactions
1.21.3.3. Metal-catalyzed cyclization reactions
1.21.4. Adventitious contaminants impact the reaction
1.21.4.1. Introduction
1.21.4.2. Catalyst impurities
1.21.4.3. Reagent impurities
1.21.4.4. Solvent impurities
1.21.4.5. The particular case of carbon materials
1.21.5. Detecting and avoiding impurities
1.21.5.1. Introduction
1.21.5.2. Analytical tools
1.21.5.3. Approaches to avoiding impurities
1.21.6. Concluding remarks
References
Back cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of volume 2
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 2
Preface
Introduction to Groups 1 to 2
References
Organometallic Complexes of the Alkali Metals
Abbreviations
2.02.1. Introduction
2.02.2. Structural diversity of alkali metal organometallics
2.02.2.1. Alkyl derivatives
2.02.2.1.1. Methyl, propyl and butyl
2.02.2.1.2. Secondary and tertiary alkyl derivatives
2.02.2.1.3. Benzyl, diphenyl, and triphenylmethane derivatives
2.02.2.1.4. Silyl substituted alkyl derivatives
2.02.2.1.5. Phosphorus and sulfur substituted alkyl derivatives
2.02.2.2. Aryl derivatives
2.02.2.3. Cyclopentadienide, indenide and fluorenide derivatives
2.02.2.4. Alkali metal interactions with π-systems
2.02.2.5. Alkynyl derivatives
2.02.2.6. Ylide, yldiide, and methandiide derivatives
2.02.2.7. Metallocene derivatives
2.02.3. Assessing aggregation of alkali metal organometallics using NMR spectroscopy
2.02.3.1. DOSY NMR studies
2.02.3.2. Solution constitution of lithium amides
2.02.4. Mixed alkyl/alkoxide aggregates of alkali metals
2.02.5. Summary
References
Organometallic Complexes of the Alkaline Earth Metals
Abbreviations
2.03.1. Introduction
2.03.2. Beryllium
2.03.2.1. Aryl and allyl compounds
2.03.2.2. Carbene stabilized organoberyllium compounds
2.03.2.2.1. N-Heterocyclic carbene (NHC) stabilized beryllium compounds
2.03.2.2.2. Cyclic (alkyl) (amino) carbene (CAAC) stabilized organoberyllium compounds
2.03.2.2.2.1. CAAC-stabilized low-oxidation state organoberyllium compounds
2.03.2.2.2.2. CAAC stabilized neutral radicals and radical cations
2.03.2.2.2.3. Reactivity of CAAC stabilized beryllium dihalide compounds
2.03.2.2.3. Carbodicarbene stabilized organoberyllium compounds
2.03.2.2.4. Synthesis of carbodiphosphorane-stabilized organoberyllium compounds with a metal-carbon double bond
2.03.2.3. Organoberyllium compounds with group 15 donor ligands
2.03.2.3.1. N-donor stabilized organoberyllium compounds
2.03.2.3.2. P-donor stabilized organoberyllium compounds
2.03.2.4. Miscellaneous compounds
2.03.3. Magnesium
2.03.3.1. Organocyclopentadienyl derivatives of magnesium
2.03.3.2. Carbene stabilized organomagnesium compounds
2.03.3.2.1. `Normal NHC coordinated organomagnesium compounds
2.03.3.2.2. `Abnormal NHC-supported organomagnesium compounds
2.03.3.2.3. CAAC-stabilized organomagnesium compounds
2.03.3.2.4. Alkoxy-functionalized NHC-stabilized organomagnesium compounds
2.03.3.2.5. Amido-functionalized NHC-stabilized organomagnesium compounds
2.03.3.3. Organomagnesium compounds with group 15 bonded ligands
2.03.3.3.1. Synthesis of N-donor ligand supported four, five, and six-membered ring organomagnesium compounds
2.03.3.3.2. Synthesis of high-membered rings and mixed-donor (N, O, and N, P, etc.) supported homoleptic and heteroleptic ...
2.03.3.3.3. Synthesis of mixed metal organomagnesium compounds
2.03.3.3.4. Chiral organomagnesium compounds related to N-donor ligands
2.03.3.3.5. Other N-donor organomagnesium compounds
2.03.3.3.6. Preparation of organomagnesium compounds by using low oxidation state Mg(I) complexes
2.03.3.3.7. Preparation of organomagnesium compounds by using BDIMg(II) hydride
2.03.3.3.8. Magnesiation of simple organic compounds
2.03.3.4. Organomagnesium compounds with oxygen bonded ligands
2.03.3.5. Cationic organomagnesium complexes
2.03.3.5.1. Group-14 stabilized organomagnesium cationic compounds
2.03.3.5.2. Group-15 stabilized organomagnesium cationic compounds
2.03.3.6. Organomagnesium π-arene complexes
2.03.3.7. Application of organomagnesium complexes as catalysts
2.03.4. Calcium
2.03.4.1. C-donor stabilized organocalcium compounds
2.03.4.1.1. Alkyl stabilized organocalcium compounds
2.03.4.1.2. Aryl stabilized organocalcium compounds
2.03.4.1.3. NHC stabilized organocalcium alkyls
2.03.4.1.4. NHC stabilized organocalcium amides/halides
2.03.4.2. Cyclopentadienyl stabilized organocalcium compounds
2.03.4.3. N-donor stabilized organocalcium compounds
2.03.4.3.1. β-Diketiminate stabilized organocalcium compounds
2.03.4.3.2. Tp stabilized organocalcium compounds
2.03.4.3.3. Pincer stabilized organocalcium compounds
2.03.4.4. Cationic organocalcium compounds
2.03.4.5. Mixed metal organocalcium compounds
2.03.4.6. π-Arene stabilized organocalcium compounds
2.03.4.7. Applications of organocalcium complexes as catalysts
2.03.5. Strontium and barium
2.03.5.1. Alkyl and alkynyl compounds
2.03.5.2. Carbene stabilized strontium and barium organometallic complexes
2.03.5.2.1. NHC stabilized compounds
2.03.5.2.2. CAAC supported compounds
2.03.5.2.3. Bis-iminophosphorano barium carbene complexes
2.03.5.3. Cyclopentadienyl derivatives of strontium and barium
2.03.5.4. Group 15 ligand supported organometallic compounds
2.03.5.4.1. N-donor ligand supported four, five, and six-membered ring organostrontium compounds
2.03.5.4.2. Tp ligand supported organobarium complexes
2.03.5.4.3. Miscellaneous N-donor ligand stabilized organostrontium compounds
2.03.5.4.4. Chiral N-donor ligand stabilized organobarium compounds
2.03.5.5. Cationic organostrontium and barium complexes
2.03.5.6. Heterobimetallic organostrontium and barium compounds
2.03.5.7. Organometallic (MSr and Ba) π Arene complexes
2.03.6. Concluding remarks
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of volume 3
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 3
Preface
Introduction to Groups 3 to 4 and the f-Elements
Alkyl, carbonyl and cyanide complexes of the group 3 metals and lanthanides
3.02.1. Introduction
3.02.2. Rare earth carbonyls
3.02.3. Rare earth alkyls
3.02.3.1. Homoleptic alkyls
3.02.3.1.1. Neutral homoleptic Ln(III) alkyls
3.02.3.1.2. Neutral homoleptic Ln(II) alkyls
3.02.3.1.3. Cationic homoleptic alkyls
3.02.3.1.4. Anionic homoleptic alkyls
3.02.3.2. Heteroleptic Ln(III) alkyls
3.02.3.2.1. Mono- and dialkyllanthanide(III) complexes with monodentate co-ligands
3.02.3.2.1.1. Alkyllanthanide(III) complexes with C-donor ligands only
3.02.3.2.1.2. Mono- and di-alkyllanthanide(III) halide complexes
3.02.3.2.1.3. Mono- and dialkyllanthanide(III) complexes with monodentate N- and/or O-donor co-ligands
3.02.3.2.2. Mono- and dialkyllanthanide(III) complexes with bidentate N- and/or O-donor co-ligands
3.02.3.2.3. Mono- and dialkyllanthanide(III) complexes with tridentate and tetradentate N- and/or O-donor co-ligands
3.02.3.2.4. Mono- and dialkyllanthanide(III) complexes with B- or P-donor co-ligands
3.02.3.3. Heteroleptic Ln(II) alkyls
3.02.4. Rare earth cyanides
3.02.5. Conclusions
References
Hydride, Alkyl, Aryl, Acetylide, Carbonyl, and Cyanide Complexes of the Actinides
3.03.1. Introduction
3.03.2. Homoleptic actinide hydrides
3.03.3. Actinide aryls
3.03.4. Actinide alkyls
3.03.5. Actinide acetylides
3.03.6. Actinide carbonyls
3.03.7. Actinide cyanides
3.03.8. Outlook and future work
Acknowledgment
References
Alkyl, Carbonyl and Cyanide Complexes of the Group 4 Metals
Nomenclature
3.04.1. Introduction
3.04.2. Alkyl complexes of the Group 4 metals
3.04.2.1. Introduction
3.04.2.2. Alkyl metallocene complexes in olefin polymerization
3.04.2.2.1. Historical context
3.04.2.2.2. Contemporary studies
3.04.2.3. Post-metallocene olefin polymerization
3.04.2.3.1. Historical context
3.04.2.3.2. Contemporary studies
3.04.2.4. Catalytic and synthetic applications of Group 4 alkyl complexes
3.04.2.4.1. Introduction
3.04.2.4.2. Hydroamination and hydroaminoalkylation
3.04.2.4.3. CH activation of nitrogen-containing heterocycles
3.04.2.4.4. Miscellaneous catalytic and synthetic applications
3.04.2.5. Low oxidation state complexes, and the frontiers of Group 4 alkyl coordination chemistry
3.04.2.6. Summary
3.04.3. Carbonyl complexes
3.04.3.1. Introduction
3.04.3.2. Titanium carbonyl complexes
3.04.3.3. Zirconium and hafnium carbonyl complexes
3.04.3.4. Summary
3.04.4. Cyanide and isonitrile [isocyanide] complexes
3.04.4.1. Introduction
3.04.4.2. Cyanide complexes (MCN)
3.04.4.3. Isonitrile complexes (MCNR) and their reactivity
3.04.4.3.1. σ-complexes of isonitrile ligands
3.04.4.3.2. Reaction chemistry of isonitrile ligands
3.04.4.4. Summary
3.04.5. Outlook
Acknowledgment
References
N-Heterocyclic and Abnormal/Mesoionic Carbene Complexes of the Group 3 Metals and Lanthanides
3.05.1. Introduction
3.05.2. Divalent lanthanide NHC complexes
3.05.3. Trivalent lanthanide NHC complexes
3.05.3.1. Monodentate neutral NHC ligands
3.05.3.2. Bidentate monoanionic NHC ligands
3.05.3.2.1. NHC ligands with N-based tether (amido group)
3.05.3.2.2. NHC ligands with O-based tethers (alkoxy or aryloxy, enolate group)
3.05.3.2.2.1. Unsaturated NHC ligands with alkoxide groups
3.05.3.2.2.2. Saturated NHC ligands with alkoxide groups
3.05.3.2.2.3. Aryloxy-tethered and enolate-functionalized NHC ligands
3.05.3.2.3. NHC ligands with C-based tether
3.05.3.2.4. NHC ligands with polyatomic tether (Cp, indenyl, fluorenyl, NCO, NCN)
3.05.3.3. Tridentate NHC pincer complexes
3.05.3.3.1. Pincer ligands with one NHC unit
3.05.3.3.2. Pincer ligands with two NHC units
3.05.4. Tetravalent lanthanide NHC complexes
3.05.5. Lanthanide complexes with abnormal/mesoionic NHC ligands
3.05.6. Conclusion
Acknowledgment
References
N-Heterocyclic and Mesoionic Carbene Complexes of the Actinides
3.06.1. Introduction & scope
3.06.2. Thorium-NHC complexes
3.06.3. Uranium-NHC complexes
3.06.3.1. Uranium(VI) and uranium(V)
3.06.3.2. Uranium(IV)
3.06.3.3. Uranium(III)
3.06.4. Mesoionic carbenes & carbodicarbenes
3.06.5. Conclusion & outlook
3.06.6. Appendix
References
N-Heterocyclic and Mesoionic Carbene Complexes of the Group 4 Metals
Nomenclature
3.07.1. Introduction
3.07.2. Bonding between NHCs and group 4 metals
3.07.2.1. Orbital interactions
3.07.2.2. The EDA approach
3.07.2.2.1. Principle
3.07.2.2.2. Results
3.07.2.3. Comparison with other neutral donors
3.07.3. Synthesis of group 4 metal NHC complexes
3.07.4. Complexes bearing monodentate ligands
3.07.4.1. M(IV) complexes
3.07.4.2. Lower oxidation states
3.07.5. Complexes bearing bidentate NHCs
3.07.5.1. O-functionalized ligands
3.07.5.2. N-functionalized ligands
3.07.5.3. C-functionalized and bis-NHC ligands
3.07.6. Complexes bearing tridentate NHCs
3.07.6.1. O,O functionalized ligands
3.07.6.1.1. Flexible bisaryloxy-NHC ligands
3.07.6.1.2. Rigid bisaryloxy-NHC ligands
3.07.6.2. N,O-functionalized ligands
3.07.6.3. N,N-functionalized ligands
3.07.6.4. N-C-functionalized ligands
3.07.6.5. CCC pincer NHC ligands
3.07.7. Miscellaneous
3.07.8. Conclusion
3.07.9. Appendix
3.07.9.1. Calculation of estimated deviations (esds) for mean distances
Acknowledgment
References
Relevant Websites
Alkylidene Complexes of the Group 3 Metals and Lanthanides
3.08.1. Introduction
3.08.1.1. Motivation for this review
3.08.1.2. Scope of this article
3.08.1.3. General considerations
3.08.1.3.1. MCR2 chemistry
3.08.1.3.2. RECR2 chemistry
3.08.2. Methylidenes
3.08.2.1. Bridging methylidenes
3.08.2.1.1. μ2-methylidenes
3.08.2.1.2. μ3-methylidenes
3.08.2.2. Lewis acid-supported
3.08.3. Alkylidenes
3.08.3.1. α-Silyl-alkylidenes
3.08.3.2. Phosphorano-stabilised alkylidenes
3.08.3.2.1. Pincer-type
3.08.3.2.1.1. Bis(iminophosphorano)methanediide complexes
3.08.3.2.1.2. Bis(thiophosphorano)methanediide
3.08.3.2.2. Non-pincer type
3.08.3.3. Phosphino- and phosphonio-alkylidenes
3.08.4. Conclusions
References
Actinide Metal Carbene Complexes: Synthesis, Structure and Reactivity
3.09.1. Terminology-Carbene or alkylidene?
3.09.2. Evidence for AnC species: Experimental and theoretical piloting works
3.09.2.1. AnC species as reaction intermediates
3.09.2.2. AnC species in an inert gas matrix
3.09.3. `Bottleable actinide nucleophilic carbene complexes: The synthetic effort
3.09.3.1. P(V)-stabilized actinide ylide carbene complexes: Synthesis, structure, reactivity
3.09.3.1.1. Actinide ylide carbene complexes [L3An(IV)(C(H)ER3)] (E: P, As): Synthesis and structure
3.09.3.1.2. Actinide ylide carbene complexes [L3An(IV)(C(H)ER3)] (E: P, As): Reactivity
3.09.3.2. P(V)-stabilized actinide pincer-type carbene complexes: Synthesis, structure, reactivity
3.09.3.2.1. U(III) pincer carbene complexes
3.09.3.2.2. U(IV) and Th(IV) pincer carbene complexes
3.09.3.2.3. U(V) pincer carbene complexes
3.09.3.2.4. U(VI) pincer carbene complexes
3.09.3.3. P(III)-stabilized actinide carbene complexes: Synthesis, structure and reactivity
3.09.3.4. UC bonds in endohedral metallofullerenes (EMFs)
3.09.4. Conclusion and Outlook
Acknowledgment
References
Alkylidene Complexes of the Group 4 Transition Metals
3.10.1. Introduction
3.10.2. Titanium methylidenes
3.10.3. Titanium alkylidenes
3.10.4. Titanium bridging methylenes
3.10.5. Titanium bridging alkylenes
3.10.6. Titanium alkylidene clusters
3.10.7. Zirconium methylidenes
3.10.8. Terminal zirconium alkylidenes
3.10.9. Heteroatom substituted zirconium alkylidenes
3.10.10. Bridging zirconium methylenes
3.10.11. Bridging zirconium alkylenes
3.10.12. Zirconium alkylene clusters
3.10.13. Hafnium methylidenes
3.10.14. Hafnium alkylidenes
3.10.15. Hafnium bridging alkylenes
3.10.16. Hafnium alkylene clusters
3.10.17. Summary
Acknowledgment
References
Alkenes and Allyl Complexes of the Group 3 Metals and Lanthanides
Abbreviations
3.11.1. Introduction
3.11.2. Alkene, alkyne, alkenyl, alkynyl complexes of the lanthanides
3.11.2.1. Alkene and alkyne complexes
3.11.2.2. Alkenyl and alkynyl complexes
3.11.3. Allyl complexes of the lanthanides
3.11.3.1. Homoleptic allyl complexes
3.11.3.1.1. Bis-allyl complexes
3.11.3.1.2. Tris-allyl complexes
3.11.3.1.3. Bis-allyl cationic complexes
3.11.3.1.4. Mono-allyl dicationic complexes
3.11.3.1.5. Tetra-allyl anionic complexes
3.11.3.2. Mono-substituted bis-allyl complexes: (Allyl)2LnX compounds
3.11.3.2.1. (Allyl)2LnX compounds with halide ligand
3.11.3.2.2. (Allyl)2LnX compounds with amide and related N-donor ligands
3.11.3.2.3. (Allyl)2LnX compounds with cyclopentadienyl/indenyl ligands
3.11.3.3. Bis-substituted mono-allyl complexes: (Allyl)LnX2 compounds
3.11.3.3.1. (Allyl)LnX2 compounds with borohydride ligands
3.11.3.3.2. (Allyl)LnX2 compounds with amide and related N-donor ligands
3.11.3.3.3. (Allyl)LnX2 compounds with alkoxide ligands
3.11.3.3.4. Cationic (allyl)LnX compounds with cyclopentadienyl or related ligands
3.11.3.3.5. (Allyl)LnX2 compounds with cyclopentadienyl ligands
3.11.3.3.6. (Allyl)LnXX compounds
3.11.3.4. Aza-allyl lanthanide complexes
3.11.3.5. Lanthanide complexes with unusual allyl coordination mode
3.11.3.6. Allyl complexes of the lanthanides as intermediates
3.11.4. Conclusion
References
Alkene, Alkyne and Allyl Complexes of the Actinides
3.12.1. Introduction
3.12.2. Allyl complexes
3.12.2.1. Bonding
3.12.2.2. Homoleptic allyl complexes
3.12.2.3. Heteroleptic allyl complexes
3.12.2.3.1. Heteroleptic allyl complexes originating from [(η3-C3H5)4U]
3.12.2.3.2. Heteroleptic allyl complexes supported by cyclopentadienyl ligands, [CpnAn(allyl)4-n] (An=Th, U; n=1-3) and [ ...
3.12.2.3.3. Other heteroleptic allyl complexes stabilized by NON-pincer ligands, [L2An(allyl)2] (An=Th, U)
3.12.2.3.4. Heteroleptic allyl complexes derived from reactivity studies
3.12.3. Alkene complexes
3.12.4. Alkyne complexes
3.12.4.1. Bonding
3.12.4.2. Early examples and isolated base-free actinide metallacyclopropenes
3.12.4.3. Reactivity
3.12.5. Conclusion
Acknowledgment
References
Group 4 Metal Alkyne, Alkene, and Allyl Complexes
3.13.1. Introduction
3.13.2. Alkyne complexes
3.13.2.1. η2-Alkyne ligand on d0 metal centers
3.13.2.2. η2-Alkyne ligand on d2 metal centers
3.13.2.2.1. Synthesis of η2-alkyne complexes of divalent group 4 metallocenes
3.13.2.2.2. η2-Alkyne complexes of divalent group 4 metal complexes having various supporting ligands
3.13.3. Alkene complexes
3.13.3.1. η2-Alkene ligand on d0 metal centers
3.13.3.2. η2-Alkene ligand on low-valent metal centers
3.13.4. Allyl complexes
3.13.4.1. Allylmetal complexes synthesized using organometallic reagents
3.13.4.1.1. Allyltitanium complexes
3.13.4.1.2. Allylzirconium and hafnium complexes
3.13.4.2. Allylmetal complexes synthesized from (butadiene)metal complexes
3.13.4.2.1. Allylmetal complexes from (butadiene)metal complexes and unsaturated organic and metal carbonyl compounds
3.13.4.2.2. Allylmetal complexes from (diene)metal complexes and Lewis acids
3.13.4.3. Allylmetal complexes synthesized via insertion, CH bond activation, CC bond cleavage, and C-X bond cleavage
3.13.5. Conclusion
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of volume 4
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 4
Preface
Buta- and Pentadienyl Complexes of the Group 3 Metals and Lanthanides
4.01.1. Introduction
4.01.2. Butadienyl complexes
4.01.2.1. Cyclobutadienyl complexes
4.01.2.2. Butadienyl complexes
4.01.3. Metallacyclic complexes
4.01.3.1. Scandacyclopropene complexes
4.01.3.2. Metallacyclopentene complexes
4.01.3.3. Metallacyclopentadiene complexes
4.01.4. Pentadienyl complexes
4.01.4.1. Homoleptic Ln(III) pentadienyl complexes
4.01.4.2. Lanthanide(II) pentadienides
4.01.4.3. Heteroleptic pentadienyl complexes
4.01.5. Conclusion
References
Buta- and Penta-Dienyl Complexes of the Actinides
4.02.1. Introduction
4.02.1.1. Scope of chapter
4.02.1.2. Reading guide
4.02.2. An overview of hydrocarbyl buta- and penta-dienyl actinide complexes
4.02.2.1. Homoleptic hydrocarbyl actinide buta- and penta-dienyl complexes
4.02.2.2. Heteroleptic hydrocarbyl actinide buta- and penta-dienyl complexes with non-cyclopentadienyl ancillary ligand e ...
4.02.2.3. Heteroleptic hydrocarbyl actinide buta- and penta-dienyl complexes with a tris-cyclopentadienyl ancillary ligan ...
4.02.2.4. Heteroleptic hydrocarbyl actinide buta- and penta-dienyl complexes with a bis-cyclopentadienyl ancillary ligand ...
4.02.3. Acyclic butene-diyl and butadiene-diyl complexes of the actinides
4.02.3.1. Acyclic 2-butene-1,4-diyl complexes of the actinides
4.02.3.2. Acyclic 1,3-butadiene-1,4-diyl complexes of the actinides
4.02.4. Planar five-membered metallacyclic complexes of the actinides
4.02.4.1. Actinacyclopentadiene complexes
4.02.4.2. Actinacyclopentatriene complexes
4.02.4.3. An actinacyclopentyne complex
4.02.5. Cyclobutadienyl complexes of the actinides
4.02.6. Conclusion
References
Buta- and Penta-Dienyl Complexes of the Group 4 Metals
Abbreviations
4.03.1. Introduction
4.03.2. Butadienyl
4.03.2.1. Synthesis of ``Cp2M(II)´´ and derivatives
4.03.2.2. Non-cyclopentadienyl supporting ligands
4.03.2.3. Insertion reactivity of alkynes to form metallacyclopentadienes
4.03.2.4. Applications of metallacyclopentadienes to form unsaturated rings: Monometallic systems
4.03.2.5. Applications of metallacyclopentadienes to form unsaturated rings: Multimetallic systems
4.03.3. Pentadienyl
4.03.3.1. Introduction
4.03.3.2. Open pentadienyl
4.03.3.3. Dimethylcyclohexadienyl
4.03.3.4. Heteroatomics and clusters
4.03.4. Conclusion
Acknowledgment
References
Cyclopentadienyls and Phospholyls of the Group 3 Metals and Lanthanides
Abbreviations
4.04.1. Group 3 and lanthanide cyclopentadienyl complexes
4.04.1.1. Introduction
4.04.1.2. Fundamental reactivity
4.04.1.3. Catalysis
4.04.1.3.1. CH bond functionalization and activation
4.04.1.3.2. Olefin polymerization
4.04.1.3.2.1. Half-metallocene complexes
4.04.1.3.2.2. Metallocene complexes
4.04.1.3.2.3. Ansa-lanthanidocenes
4.04.1.3.3. Diene polymerization
4.04.1.3.3.1. Half-metallocene complexes
4.04.1.3.3.2. Metallocene complexes
4.04.1.3.3.3. Ansa-lanthanidocenes
4.04.1.3.4. Hydrofunctionalization
4.04.1.3.5. Ring opening polymerization
4.04.1.3.6. Rare earth metallocene catalysis conclusions
4.04.1.4. Cluster complexes
4.04.1.5. Small-molecule activation
4.04.1.5.1. N2, NO, and N2O activation
4.04.1.5.2. CO activation
4.04.1.5.3. CO2 activation
4.04.1.5.4. Heavy p-block element lanthanide complexes
4.04.1.6. Cp3Ln reactivity
4.04.1.7. Syntheses of exotic metallocene complexes
4.04.1.8. Cyclopentadienyl lanthanide complexes as single-molecule magnets (SMMs)
4.04.1.8.1. Mononuclear SMMs
4.04.1.8.1.1. Metallocenium LnIII SMMs
4.04.1.8.1.2. Cyclopentadienyl-based LnII SMMs
4.04.1.8.1.3. Mononuclear metallocene SMMs with equatorial ligands
4.04.1.8.2. Multinuclear SMMs
4.04.1.8.2.1. Halide- and chalcogenide-bridged lanthanide SMMs
4.04.1.8.2.2. Radical-bridged lanthanide SMMs
4.04.1.9. Divalent lanthanides
4.04.1.9.1. Reactivity of decamethylsamarocene and derivatives
4.04.1.9.2. Divalent-like reactivity
4.04.1.10. Group 3 and lanthanide phospholyl complexes
4.04.1.10.1. General coordination chemistry and reactivity
4.04.1.10.2. Catalytically active phospholyl complexes
4.04.1.10.3. Phospholyl ligands in single-molecule magnetism
4.04.1.11. Conclusion
4.04.1.11.1. Catalysis
4.04.1.11.2. Small molecule activation
4.04.1.11.3. Divalent lanthanides
4.04.1.11.4. Single-molecule magnetism
4.04.1.11.5. Phospholyl lanthanide chemistry
Acknowledgment
References
Cyclopentadienyl and phospholyl compounds in organometallic actinide chemistry
4.05.1. Introduction
4.05.1.1. History
4.05.1.2. Common starting materials
4.05.2. Mono(cyclopentadienyl) actinide complexes
4.05.3. Bis(cyclopentadienyl) complexes
4.05.3.1. Halide and pseudo-halide complexes
4.05.3.2. Chalcogen complexes
4.05.3.3. Pnictogen complexes
4.05.3.3.1. Redox-active ligands
4.05.3.4. Actinide-phosphorus and arsenic bonds
4.05.3.5. Metallacycles
4.05.3.6. Carbene complexes
4.05.3.7. Insertion reactions and CH bond activations with An(IV) complexes
4.05.3.8. Hydride complexes
4.05.3.9. Linear metallocenes
4.05.4. Tris(cyclopentadienyl)-based complexes
4.05.5. Tetrakis(cyclopentadienyl) complexes
4.05.6. Phospholyl ligands
4.05.7. Conclusion
References
Cyclopentadienyl and Phospholyl Complexes of the Group 4 Metals
Nomenclature
Ansa bridged ligands abbreviation
4.06.1. Introduction
4.06.2. Titanium
4.06.2.1. Mono(cyclopentadienyl) titanium chemistry
4.06.2.1.1. Nitrogen-based ligands
4.06.2.1.1.1. Amido and imido ligands
4.06.2.1.1.2. Hydrazido ligands
4.06.2.1.1.3. Phosphinimide and ketimide ligands
4.06.2.1.1.4. Dinitrogen activation
4.06.2.1.1.5. Hydroamination catalysis
4.06.2.1.2. Aryloxide complexes for olefin co-polymerization
4.06.2.1.3. Functionalized Cp ligands
4.06.2.1.3.1. Constrained geometry (CG) complexes
4.06.2.1.3.2. Arene functionalized Cp ligands for ethylene oligomerization
4.06.2.1.3.3. Bis(silyl) functionalized Cp ligands
4.06.2.1.4. Mixed sandwich complexes
4.06.2.1.4.1. Pentadienyl complexes
4.06.2.1.4.2. Main group element modified rings
4.06.2.1.5. Cluster complexes
4.06.2.1.5.1. N-bridged clusters
4.06.2.1.5.2. Hydride clusters
4.06.2.1.5.3. Oxo and siloxy clusters
4.06.2.1.5.4. Sulfido clusters
4.06.2.2. Bis(cyclopentadienyl) titanium chemistry
4.06.2.2.1. Dinitrogen activation
4.06.2.2.1.1. CpR complexes
4.06.2.2.1.2. η5:η1-Fulvalenes
4.06.2.2.2. Proton coupled electron transfer (PCET)
4.06.2.2.2.1. Ammonia synthesis via PCET
4.06.2.2.2.2. Complexation-induced PCET with nitroxides
4.06.2.2.3. Oxo and peroxo complexes
4.06.2.2.4. Triflate complexes involved in water splitting
4.06.2.2.5. Low valent titanocene alkyne complexes
4.06.2.2.5.1. Alkynes and hetero-substituted alkynes
4.06.2.2.5.2. Carbodiimides
4.06.2.2.5.3. Nitriles and isonitriles
4.06.2.2.5.4. Azides and aziridines
4.06.2.2.5.5. Nitrogen-containing heterocycles
4.06.2.2.5.6. Lewis acids
4.06.2.2.6. Titanacyclobutanes and butadienes
4.06.2.2.7. Derivatized Cp ligands
4.06.2.2.7.1. Functional Cp ligands
4.06.2.2.7.2. Ansa-bridged titanocene(IV) complexes
4.06.2.2.7.3. η5:η1-Fulvalene complexes
4.06.2.2.8. Main group chemistry
4.06.2.2.8.1. Dehydrogenation of borane adducts
4.06.2.2.8.2. Hydrosilyl ligands
4.06.2.2.8.3. Heavy carbene ligands (Si, Ge, Sn, Pb)
4.06.2.2.8.4. Stannole complexes
4.06.2.2.8.5. Zintyl clusters
4.06.2.2.8.6. Phosphorus-phosphorus bond activation
4.06.2.2.8.7. Sulfur ligands
4.06.2.2.9. Organofluorine chemistry
4.06.2.2.10. Heterobimetallic complexes
4.06.2.3. Phospholyl titanium chemistry
4.06.2.3.1. Background and phospholyl titanium chemistry since 2000
4.06.2.4. Table of crystallographically characterized Ti compounds
4.06.3. Zirconium
4.06.3.1. Mono(cyclopentadienyl) zirconium chemistry
4.06.3.1.1. Hydroamination catalysts
4.06.3.1.2. Zr CpR complexes for olefin oligomerization
4.06.3.1.2.1. Zr CpR amidinate complexes
4.06.3.1.2.2. Constrained-geometry CpR complexes for olefin polymerization
4.06.3.1.2.3. Other ZrCpR complexes for olefin polymerization and oligomerization
4.06.3.1.3. Other ZrCpR reactivity
4.06.3.1.3.1. ZrCpR complexes reacting with B
4.06.3.1.3.2. ZrCpR complexes forming clusters
4.06.3.1.4. Zr CpR combined with other rings
4.06.3.1.4.1. Other ZrCpR complexes
4.06.3.2. Bis(cyclopentadienyl) zirconium chemistry
4.06.3.2.1. Zirconocene complexes for small molecule activation
4.06.3.2.1.1. N2 activation
4.06.3.2.1.2. Activation of other small molecules
4.06.3.2.1.3. ZrCpR2 complexes for polymerization catalysis and reactivity with activators
4.06.3.2.2. Zirconocene alkyne chemistry
4.06.3.2.2.1. Zirconocene(II) reactivity
4.06.3.2.2.2. ZrCpR2 other CE insertion chemistry
4.06.3.2.3. Zirconocene p-block chemistry
4.06.3.2.3.1. Frustrated Lewis pair chemistry
4.06.3.2.3.2. Nitrogen based ligands
4.06.3.2.3.3. Other p-block compounds
4.06.3.2.4. Other zirconocene hydrides
4.06.3.2.5. Zirconocene heterobimetallic complexes
4.06.3.2.6. Other zirconocene complexes
4.06.3.3. Phospholyl zirconium chemistry
4.06.3.3.1. Phospholyl zirconium chemistry since 2000
4.06.3.4. Table of crystallographically characterized Zr compounds
4.06.4. Hafnium
4.06.4.1. Mono(cyclopentadienyl) hafnium chemistry
4.06.4.1.1. Nitrogen based ligands
4.06.4.1.1.1. Imido and amido ligands
4.06.4.1.1.2. Amidinato and enamino ligands
4.06.4.1.1.3. Multidentate N,N and N,O ligands
4.06.4.1.2. Aryloxide complexes for polymerization
4.06.4.1.3. Constrained geometry complexes
4.06.4.1.4. Carbon-based ligands
4.06.4.1.4.1. Diene complexes
4.06.4.1.4.2. Mixed-sandwich complexes
4.06.4.1.5. Main group ligands
4.06.4.1.6. Cluster complexes
4.06.4.2. Bis(cyclopentadienyl) hafnium chemistry
4.06.4.2.1. Dinitrogen activation and functionalization
4.06.4.2.1.1. CpMe42Hf complexes
4.06.4.2.1.2. Ansa-bridges complexes
4.06.4.2.1.3. Cp1,2,4-{Me3}2Hf complexes
4.06.4.2.2. Low valent CpR2Hf alkyne complexes
4.06.4.2.3. Main group chemistry
4.06.4.2.3.1. Main group element dehydrocoupling
4.06.4.2.3.2. Complexes with silicon ligands
4.06.4.2.3.3. Germylene complexes
4.06.4.2.3.4. Hafnoceneophanes
4.06.4.2.3.5. Other main group CpR2Hf complexes
4.06.4.3. Table of crystallographically characterized Hf compounds
4.06.5. Closing remarks
References
Arene Complexes of the Group 3 Metals and Lanthanides
4.07.1. Introduction
4.07.2. Neutral arene Ln/Group 3 interactions
4.07.2.1. Ln/Group 3 interactions with arenes which are not part of a ligand framework
4.07.2.2. Hetero-bidentate arene interactions
4.07.2.3. Intramolecular arene interactions supported by a tripodal tris-phenoxide ligand
4.07.3. Anionic arene Ln/Group 3 interactions: Inverted arenes
4.07.3.1. Inverted arene complexes with neutral co-ligands
4.07.3.2. Inverted arene complexes with simple X co-ligands (X=I, H)
4.07.3.3. Inverted arene complexes supported by amido ligands
4.07.3.4. Inverted arene complexes supported by RO- ligands
4.07.3.5. Inverted arenes supported by CpR- ligands
4.07.4. Conclusions
References
Arene Complexes of the Actinides
4.08.1. Introduction
4.08.2. Metal-arene bonding considerations
4.08.2.1. Arenes
4.08.2.2. Actinides
4.08.3. Thorium arene complexes
4.08.3.1. Formally neutral thorium arene complexes
4.08.3.2. Inverse sandwich dithorium arene complexes
4.08.4. Uranium arene complexes
4.08.4.1. Formally neutral uranium arene complexes
4.08.4.2. Inverse sandwich diuranium(III) arene complexes
4.08.4.3. Inverse sandwich diuranium(V) arene complexes
4.08.4.4. Uranium complexes stabilized by arene-based ligands
4.08.5. Neptunium arene complexes
4.08.6. Summary and outlook
4.08.7. Note added in proof
Acknowledgment
References
Arene Complexes of the Group 4 Metals
4.09.1. Introduction
4.09.2. Bonding considerations
4.09.3. Low valent group 4-arene aluminates
4.09.3.1. Titanium-arene aluminates
4.09.3.2. Zirconium and hafnium-arene aluminates
4.09.4. High valent group 4-arene complexes
4.09.4.1. Lewis acid adducts
4.09.4.1.1. Jacobsen rearrangements
4.09.4.2. Synthesis through alkyl protonation
4.09.4.3. Synthesis through alkyl abstraction
4.09.4.3.1. Hydrocarbyls
4.09.4.3.2. Metallocenes
4.09.4.3.3. Amides
4.09.4.3.4. Aryloxides
4.09.4.4. Ansa-arenes
4.09.5. Metal vapor synthesis
4.09.5.1. Homoarenes
4.09.5.1.1. Bis(arene)titanium
4.09.5.1.2. Bis(arene)zirconium and bis(arene)hafnium
4.09.5.1.3. Hybrid vapor deposition
4.09.5.1.4. Vapor deposition compounds in catalysis
4.09.5.2. Heteroarenes
4.09.6. Coordination through arene reduction
4.09.6.1. Homoleptic complexes
4.09.6.1.1. Bis(arenes)
4.09.6.1.2. Tris(arenes)
4.09.6.2. Heteroleptic complexes
4.09.6.3. Inverted sandwich compounds
4.09.6.4. Hydrogenolysis
4.09.6.5. Bimolecular arene coordination
4.09.6.6. Intramolecular arene coordination
4.09.6.6.1. Reactivity of intramolecular titanium-arenes
4.09.6.7. Tethered arenes
4.09.7. Conclusion
Acknowledgment
References
Larger Aromatic Complexes of the Group 3 Metals and Lanthanides
4.10.1. Introduction
4.10.2. Complexes based on cycloheptatrienyl ligands
4.10.3. Complexes based on cyclooctatetraenyl ligands
4.10.3.1. Sc, Y, La
4.10.3.2. Ce
4.10.3.3. Pr, Nd, Pm, Sm, Eu
4.10.3.3.1. Synthesis and properties
4.10.3.3.2. Chemical properties of the dinuclear [(COT)Ln(μ-Cl)(THF)2]2 complexes
4.10.3.4. Gd, Tb, Dy, Ho, Er, Tm, Yb
4.10.3.5. Lu
4.10.3.6. Magnetism of Ln-based complexes
4.10.3.7. Polynuclear Ln-based complexes
4.10.4. Complexes based on pentalenyl ligands
4.10.4.1. Ce
4.10.4.2. Sm, Eu, Dy, Yb
4.10.5. Complexes based on cyclononatetraenyl ligands
4.10.6. Conclusions and outlook
Acknowledgment
References
Larger Aromatic Complexes of the Actinides
4.11.1. Introduction
4.11.2. Intermezzo: Oxidation states
4.11.3. Bonding
4.11.4. Cycloheptatriene complexes of the actinides
4.11.5. Cyclooctatetraenyl complexes of the actinides
4.11.5.1. (COT)-Actinide half-sandwich complexes
4.11.5.2. Mixed sandwich complexes containing a COT- and a Cp-ligand
4.11.5.2.1. Terminal actinide oxo- or imido complexes
4.11.5.2.2. CO2 activation
4.11.5.2.3. CO activation
4.11.5.2.4. Small molecule activation of other molecules
4.11.5.3. Bridging COT-ligands in actinide complexes
4.11.5.4. The actinocenes, [An(COT)2] and their derivatives
4.11.5.4.1. Structural features of the actinocenes
4.11.5.4.2. Adduct formation at the actinocene
4.11.6. Pentalene complexes
4.11.7. An complexes with donors containing 9C-atoms in a planar environment
4.11.8. An complexes with donors containing 10C-atoms in planar environment
4.11.9. Conclusion
References
Larger Aromatic Complexes of the Group 4 Metals
Nomenclature
4.12.1. Introduction and scope
4.12.2. Cycloheptatrienyl complexes
4.12.2.1. Half-sandwich complexes
4.12.2.1.1. Complexes with dienyl ligands
4.12.2.1.2. Complexes with η1-bound anionic heteroatom donor ligands
4.12.2.2. Troticene, trozircene and trohafcene complexes
4.12.2.2.1. Complexes without additional Lewis base coordination at the C5 or C7 ring
4.12.2.2.1.1. Synthesis of troticenes
4.12.2.2.1.2. Synthesis of new troticenes and bitroticenes by ring functionalization
4.12.2.2.1.3. Synthesis of trozircenes and trohafcene
4.12.2.2.1.4. Reactivity of trometallocenes
4.12.2.2.1.5. Bonding and spectroscopic studies
4.12.2.2.2. Heterotrozircenes
4.12.2.2.3. Synthesis and reactivity of troticenophanes
4.12.2.2.4. Complexes with Lewis base functional groups attached to the C5 or C7 ring
4.12.2.2.4.1. Synthesis of trometallocenophosphines and stoichiometric reactivity
4.12.2.2.4.2. Catalytic applications of troticenophosphines
4.12.3. Cyclooctatetraene complexes
4.12.3.1. Complexes in oxidation state +3
4.12.3.2. Complexes in oxidation state +4
4.12.3.2.1. Half-sandwich complexes
4.12.3.2.2. Sandwich complexes
4.12.4. Pentalene complexes
4.12.4.1. Ligand developments
4.12.4.2. Complexes with a pentalene ligand η8-coordinated to one metal
4.12.4.2.1. Half-sandwich titanium compounds
4.12.4.2.2. Half-sandwich zirconium and hafnium compounds
4.12.4.2.3. Homoleptic sandwich and mixed-sandwich compounds
4.12.4.3. Complexes with a hydropentalene ligand η5-coordinated to one metal
4.12.4.4. The chemistry of [Ti2(μ-η5,η5-PnTiPS)2]
4.12.4.4.1. Synthesis and single-bond activation reactions
4.12.4.4.2. Reactivity with unsaturated substrates
4.12.5. Nine-membered ring systems
4.12.5.1. Cyclononatetraenyl complexes
4.12.5.2. Zirconium indenyl complexes with η9-coordination
4.12.5.2.1. Synthesis and structure
4.12.5.2.2. Reactivity
4.12.6. Concluding remarks
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of volume 5
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 5
Preface
5.01 Overview and Introduction
5.02 Cyclic and Non-Cyclic Pi Complexes of Vanadium
5.02.1. Introduction
5.02.2. Mono(η5-cyclopentadienyl) complexes
5.02.2.1. Mono(η5-cyclopentadienyl)vanadium(I) complexes
5.02.2.1.1. Tetracarbonyl(η5-cyclopentadienyl)vanadium
5.02.2.1.1.1. Synthesis, structure and ring-substituted derivatives
5.02.2.1.1.2. Carbonyl substitution
5.02.2.1.1.3. Photochemical activation of SiH and SnH bond
5.02.2.1.1.4. Applications
5.02.2.1.2. Polynuclear carbonyl complexes
5.02.2.2. Mono(η5-cyclopentadienyl) complexes of vanadium(II) and vanadium(III)
5.02.2.2.1. Halogenido complexes
5.02.2.2.2. Carboxylato and phosphato complexes
5.02.2.2.3. Complexes with S-, Se- and Te-donors
5.02.2.2.4. Complexes bearing anionic N-donor ligands
5.02.2.2.5. Hydrido, alkyl, alkynyl, alkylidene and silyl derivatives
5.02.2.2.6. Boron-containing complexes
5.02.2.3. Mono(η5-cyclopentadienyl) complexes of vanadium(IV) and vanadium(V)
5.02.2.3.1. Halogenido complexes
5.02.2.3.2. Oxido complexes
5.02.2.3.3. Imido complexes
5.02.2.3.4. Chalcogenido complexes
5.02.2.3.5. Azido and nitrido complexes
5.02.2.3.6. Applications
5.02.3. Bis(η5-cyclopentadienyl) complexes
5.02.3.1. Bis(η5-cyclopentadienyl)vanadium
5.02.3.1.1. Synthesis of vanadocene and ring-substituted derivatives
5.02.3.1.2. Sandwich complexes related to vanadocene
5.02.3.1.2.1. Pentalene complexes
5.02.3.1.2.2. Complexes bearing heterocyclic Cp-like ligands
5.02.3.1.3. Reactivity of vanadocene with unsaturated molecules
5.02.3.1.3.1. Reactions with alkenes and alkynes
5.02.3.1.3.2. Reactions with keteneimines, carbodiimides, activated nitriles and arylphosphines
5.02.3.1.3.3. Reactions with compounds containing CO and CS double bonds
5.02.3.1.3.4. Reactions with miscellaneous unsaturated reagents
5.02.3.1.4. Reactivity of vanadocene with digallanes and silylene
5.02.3.2. Carbonyl and isonitrile complexes
5.02.3.3. Halogenido and pseudohalogenido complexes
5.02.3.3.1. Halides
5.02.3.3.1.1. Vanadocene monohalides
5.02.3.3.1.2. Vanadocene dihalides
5.02.3.3.2. Pseudohalides
5.02.3.4. Complexes with weakly nucleophilic ligands
5.02.3.5. Complexes of group 15 and 16 donor ligands
5.02.3.5.1. Vanadocene complexes bearing bio-ligands
5.02.3.5.1.1. Hydrolysis of vanadocene dichloride
5.02.3.5.1.2. Interaction with low molecular mass bio-ligands
5.02.3.5.1.3. Interaction with high molecular mass bio-ligands
5.02.3.5.2. Other vanadocene complexes with O-donor ligands
5.02.3.5.3. Chalcogenides and other S- and Se-donor ligands
5.02.3.5.4. Compounds with N- and P-donor ligands
5.02.3.6. Hydrido, alkyl, aryl and alkynyl derivatives
5.02.3.7. Applications
5.02.3.7.1. Biological activity
5.02.3.7.2. Applications in catalysis and material science
5.02.4. η6-Arene complexes
5.02.4.1. Bis(η6-benzene)vanadium and its derivatives
5.02.4.2. Half-sandwich, mixed-ring sandwich and multi-decker complexes
5.02.5. η7-Cycloheptatrienyl complexes
5.02.5.1. (η7-Cycloheptatrienyl)(η5-cyclopentadienyl)vanadium and its derivatives
5.02.5.2. Half-sandwich and bis(cycloheptatrienyl) complexes
5.02.6. η8-Cyclooctatetraene complexes
5.02.7. Miscellaneous cyclic π-complexes
5.02.8. Non-cyclic π-complexes
5.02.8.1. η2-Alkene, alkyne and η4-butadiene complexes
5.02.8.2. η3-Allyl complexes
5.02.8.3. η5-Pentadienyl and η7-heptadienyl complexes
5.02.9. Concluding remarks
References
5.03 Cyclic and Non-Cyclic π-Complexes of Tantalum and Niobium
5.03.1. Introduction
5.03.2. η2-Complexes of tantalum
5.03.2.1. Alkene complexes
5.03.2.2. Alkyne complexes
5.03.3. η3-Complexes of tantalum
5.03.4. η4-Complexes of tantalum
5.03.5. η6-Complexes of tantalum
5.03.6. η7-Complexes of tantalum
5.03.7. η8-Complexes of tantalum
5.03.8. η2-Complexes of niobium
5.03.8.1. Alkene complexes
5.03.8.2. Alkyne complexes
5.03.9. η4-Complexes
5.03.10. η5-Complexes of tantalum
5.03.10.1. Mono(cyclopentadienyl) complexes
5.03.10.2. Tantalum mono(cyclopentadienyl) heterodimetallic compounds
5.03.10.3. Bis(cyclopentadienyl) complexes of tantalum
5.03.10.4. Linked cyclopentadienyl complexes of tantalum
5.03.11. η5-Complexes of niobium
5.03.11.1. Mono(cyclopentadienyl) complexes of niobium
5.03.11.2. Bis(cyclopentadienyl) complexes on niobium
5.03.11.3. Linked cyclopentadienyl complexes of niobium
5.03.11.4. Indenyl complexes of niobium
5.03.12. Conclusions
References
5.04 Cyclic and Non-cyclic Pi Complexes of Chromium
5.04.1. Introduction
5.04.2. η6-Arene chromium complexes
5.04.2.1. η6-Arene chromium carbonyls
5.04.2.1.1. Aromatic nucleophilic substitution or addition reactions
5.04.2.1.2. Arene lithiations and reactions with electrophiles
5.04.2.1.3. Palladium catalyzed coupling of arene chromium carbonyls
5.04.2.1.4. Palladium catalyzed CH activation of arene chromium carbonyls
5.04.2.1.5. Desymmetrization of difunctionalized arene chromium carbonyls
5.04.2.1.6. Chiral arene chromium complexes as ligands for asymmetric catalysis
5.04.2.1.7. Cycloaddition reactions of arene chromium carbonyls
5.04.2.1.8. Ring-closing metathesis reaction of arene chromium carbonyls
5.04.2.1.9. Bimetallic and multimetallic arene chromium carbonyls
5.04.2.1.10. Gold(I)-catalyzed cyclization of arene chromium carbonyls
5.04.2.1.11. Chromium-stabilized cations and related complexes
5.04.2.1.12. Chromium carbonyls of polycyclic hydrocarbons
5.04.2.1.13. Haptotropic migration of chromium carbonyl group
5.04.2.1.14. Benzannulations of Fischer-type carbene complexes
5.04.2.1.15. Polymer-bound arene chromium carbonyls
5.04.2.1.16. Miscellaneous arene chromium carbonyls
5.04.2.1.17. Arene chromium carbonyls with heteroatoms on the periphery
5.04.2.1.18. Molecular modeling and other computational approaches
5.04.2.1.19. Spectroscopic studies on arene chromium carbonyls
5.04.2.1.20. Applications of arene chromium carbonyls
5.04.2.2. Bis(η6-arene) complexes
5.04.2.2.1. Compounds with hydrocarbon-substituted arenes
5.04.2.2.2. Compounds with heteroatom-substituted arenes
5.04.2.2.2.1. Derivatives with heteroatoms in the aromatic ring
5.04.2.2.2.2. Derivatives with heteroatoms on the periphery
5.04.2.2.3. Ion-radical salts with bis(arene)chromium complexes
5.04.2.2.4. Bimetallic and multimetallic bis(arene)chromium complexes
5.04.2.2.5. Theoretical considerations and spectroscopic studies
5.04.2.2.6. Applications of bis(arene)chromium complexes
5.04.2.3. Mono(η6-arene), half-sandwich, mixed sandwich, multidecker η6-arene chromium complexes
5.04.3. η6-Heteroarene chromium complexes
5.04.4. Other η6-pi-ligand chromium complexes
5.04.5. η5-Cyclopentadienyl chromium complexes
5.04.5.1. Sandwich chromium complexes
5.04.5.2. Half-sandwich chromium complexes as catalysts or activators
5.04.5.3. Other half-sandwich chromium complexes
5.04.5.4. Theoretical studies on the electronic structures
5.04.6. η5-Heterocyclopentadienyl chromium complexes
5.04.7. Other η5-pi-ligand chromium complexes
5.04.8. η2-Pi-ligand chromium complexes
5.04.9. η3-Pi-ligand chromium complexes
5.04.10. η4-Pi-ligand chromium complexes
5.04.11. η7-Pi-ligand chromium complexes
5.04.12. Summaries and suggestions
References
5.05 Cyclic and Non-Cyclic Pi Complexes of Molybdenum
5.05.1. Cyclic π complexes of molybdenum
5.05.1.1. Cyclopentadienyl molybdenum compounds
5.05.1.1.1. Cyclopentadienyl molybdenum tricarbonyls
5.05.1.1.1.1. [CpRMo(CO)3]n
5.05.1.1.1.2. CpRMo(CO)3H
5.05.1.1.1.3. CpRMo(CO)3X
5.05.1.1.2. Complexes containing group 13 ligands
5.05.1.1.2.1. Boron-based complexes
5.05.1.1.2.2. Gallium-based complexes
5.05.1.1.3. Complexes containing group 14 ligands
5.05.1.1.3.1. Carbon-based complexes
5.05.1.1.3.1.1. Alkyl-containing complexes
5.05.1.1.3.1.2. N-Heterocyclic carbene-containing complexes
5.05.1.1.3.1.3. Alkenyl-containing complexes
5.05.1.1.3.1.3.1 [CpRMo(CO)2(η3-allyl)] complexes
5.05.1.1.3.1.3.2 η3-Indenyl complexes
5.05.1.1.3.1.3.3 η3-Benzyl complexes
5.05.1.1.3.1.3.4 Heteroatom-substituted η3-ligands
5.05.1.1.3.1.3.5 η4-diene ligands
5.05.1.1.3.1.4. Alkynyl-containing complexes
5.05.1.1.3.1.4.1 Carbon-based η1-alkyne ligands
5.05.1.1.3.1.4.2 Carbon-based η2-alkyne ligands
5.05.1.1.3.2. Silicon-based complexes
5.05.1.1.3.2.1. Silylidyne complexes
5.05.1.1.3.2.2. Silylidene complexes
5.05.1.1.3.2.3. Silyl complexes
5.05.1.1.3.3. Ge, Sn-based complexes
5.05.1.1.4. Complexes containing group 15 ligands
5.05.1.1.4.1. Nitrogen-based complexes
5.05.1.1.4.2. Phosphorus-based complexes
5.05.1.1.4.2.1. Phosphine ligands (PY3)
5.05.1.1.4.2.2. Phosphido ligands (PY2)
5.05.1.1.4.2.3. Phosphene ligands (PY)
5.05.1.1.4.2.4. ``Naked´´ phosphorus ligands (Pn)
5.05.1.1.4.3. Arsenic, antimony, and bismuth-based complexes
5.05.1.1.5. Complexes containing group 16 ligands
5.05.1.1.5.1. Oxygen-based complexes
5.05.1.1.5.2. Sulfur-based complexes
5.05.1.1.5.3. Selenium and tellurium-based complexes
5.05.1.1.6. Bis(cyclopentadienyl) molybdenum complexes
5.05.1.1.6.1. [CpR2MoCl2] and their derivatives
5.05.1.1.6.2. [CpR2MoH2] and their derivatives
5.05.1.1.6.3. Ansa-bridges complexes
5.05.1.1.6.4. Multimetallic complexes
5.05.1.2. Arene-containing complexes of molybdenum
5.05.1.2.1. Molybdenum η2-arene complexes
5.05.1.2.2. Molybdenum η4-arene complexes
5.05.1.2.3. Molybdenum η6-arene complexes
5.05.1.2.3.1. Carbon-substituted molybdenum η6-arene complexes
5.05.1.2.3.2. Heteroatom-substituted molybdenum η6-arene complexes
5.05.1.2.4. Molybdenum η7-arene complexes
5.05.2. Non-cyclic π complexes of molybdenum
5.05.2.1. Alkene complexes
5.05.2.2. Alkyne complexes
5.05.2.3. Allyl complexes
5.05.2.4. Heteroatom-substituted π complexes
5.05.2.4.1. Carboxylate complexes
5.05.2.4.2. Amidinate complexes
5.05.2.4.3. Thiocarboxylate complexes
5.05.2.5. Trispyrazolylborate-based molybdenum π complexes
5.05.3. Summary and outlook
References
5.06 Cyclic and Non-Cyclic Pi Complexes of Tungsten
5.06.1. Monoalkene complexes
5.06.1.1. Complexes involving simple alkenes
5.06.1.2. Complexes derived from dearomatization reactions
5.06.1.2.1. Reactions of benzene
5.06.1.2.2. Reactions of naphthalene and anthracene
5.06.1.2.3. Reactions of anisole
5.06.1.2.4. Reactions of phenol
5.06.1.2.5. Reactions of anilines
5.06.1.2.6. Reactions of indolines and quinolines
5.06.1.2.7. Reactions of benzenes with electron withdrawing groups
5.06.1.2.8. Deuteration reactions
5.06.1.2.9. Stereospecific reactions
5.06.1.2.10. Reactions of pyridines and pyrimidine
5.06.1.2.11. Reactions of furan, thiophene and pyrrole
5.06.1.2.12. Cycloaddition reactions
5.06.1.2.13. Other monoalkene complexes
5.06.2. Bis-alkene complexes
5.06.3. Allyl complexes
5.06.3.1. Carbon allyl complexes
5.06.3.2. Allyl and Cp complexes
5.06.3.3. Heteroallyl complexes
5.06.4. Monoalkyne complexes
5.06.4.1. Alkyl-substituted alkynes
5.06.4.2. Hetero-substituted alkynes from Seidel
5.06.4.3. Alkyl-substituted alkyne complexes from Templeton
5.06.4.4. Additional complexes
5.06.4.5. Alkynylpeptide complexes
5.06.5. Bis-alkyne complexes
5.06.6. Tris-alkyne complexes
5.06.7. Nitriles and heteroalkyne complexes
5.06.8. Carbonyl complexes
5.06.9. Imine and iminium complexes
5.06.10. Cyclopentadienyl complexes
5.06.10.1. Cp complexes
5.06.10.1.1. Tungsten-Cp complexes
5.06.10.1.2. Cp metal cluster complexes
5.06.10.1.3. Ruiz tungsten-Cp complexes
5.06.10.1.3.1. Complexes with a single tungsten
5.06.10.1.3.2. Complexes having a tungsten-tungsten single bond
5.06.10.1.3.3. Complexes having a tungsten-tungsten multiple bonds
5.06.10.1.3.4. Complexes having a tungsten-molybdenum bond
5.06.10.2. Cp* complexes
5.06.10.2.1. Tungsten-Cp* oxide and sulfide complexes
5.06.10.2.2. Tungsten-Cp* carbonyl complexes
5.06.10.2.3. Tungsten-Cp* hydride complexes
5.06.10.2.4. Tungsten-Cp* complexes with silicon ligands
5.06.10.2.4.1. Tungsten-Cp* complexes with silane ligands
5.06.10.2.4.2. Tungsten-Cp* complexes with silylene ligands
5.06.10.2.4.3. Tungsten-Cp* complexes with silylene ligands
5.06.10.2.4.4. Tungsten-Cp* complexes with oxysilanes
5.06.10.2.4.5. Tungsten-Cp* complexes with thiosilanes
5.06.10.2.4.6. Other silicon-related Cp* complexes
5.06.10.2.5. Tungsten Cp* monoalkene complexes
5.06.10.2.6. Tungsten Cp* bis-alkene complexes
5.06.10.2.7. Tungsten Cp* monoalkyne complexes
5.06.10.2.8. Tungsten Cp* allyl complexes
5.06.10.2.9. Tungsten Cp* imine and iminium complexes
5.06.10.2.10. Tungsten Cp* and ketone complexes
5.06.10.2.11. Tungsten Cp* complexes with NO ligands
5.06.10.2.12. Tungsten-Cp* complexes with nitrogen ligands
5.06.10.2.13. Tungsten-germanium complexes
5.06.10.2.13.1. Tungsten-Cp* germyl complexes
5.06.10.2.13.2. Tungsten-Cp* germylene complexes
5.06.10.2.13.3. Tungsten-Cp* germylyne complexes
5.06.10.2.13.4. Other related tungsten-Cp* germanium complexes
5.06.10.2.14. Tungsten-Cp* complexes with CO ligands
5.06.10.2.15. Cp*-W clusters
5.06.10.3. Modified Cp and Cp* complexes
5.06.10.3.1. Modified Cp complexes
5.06.10.3.2. Modified Cp* complexes
5.06.11. Indenyl-tungsten complexes
5.06.12. Cyclobutadiene complexes
5.06.13. Arene complexes
5.06.13.1. Tungsten complexes to benzene rings
5.06.13.2. Tungsten 2,5-dimethylpyrrolide complexes
5.06.14. Cycloheptatrienyl complexes
5.06.15. Summary
References
5.07 Cyclic and Non-Cyclic Pi Complexes of Manganese
Abbreviations
5.07.1. Introduction and organization
5.07.1.1. Introduction
5.07.1.2. Coverage and organization
5.07.2. Acyclic π ligands
5.07.2.1. Alkene complexes
5.07.2.1.1. Mn(I) alkene complexes
5.07.2.1.2. Mn(0) alkene complexes
5.07.2.1.3. Reactions of previously reported alkene complexes
5.07.2.1.4. Computational reports regarding alkene complexes
5.07.2.2. Cumulene and ketene complexes
5.07.2.2.1. Neutral cumulene complexes
5.07.2.2.2. Cationic allene complexes
5.07.2.2.3. Ketene complexes
5.07.2.3. Alkyne complexes
5.07.2.4. Complexes featuring η2-coordinated heteroatom-containing π Ligands
5.07.2.4.1. η2-Silene complexes
5.07.2.4.2. η2-Imine complexes
5.07.2.4.3. η2-Methylenephosphonium complexes
5.07.2.4.4. η2-Aldehyde complexes
5.07.2.4.5. η2-Alkylideneborane complexes
5.07.2.4.6. Computational reports on heteroatom-containing η2-coordinated π systems
5.07.2.5. Allyl, benzyl, propargyl, and trimethylenemethane complexes
5.07.2.5.1. Mn(I) allyl and benzyl complexes
5.07.2.5.2. Mn(II) allyl complexes
5.07.2.5.3. Propargyl and trimethylenemethane complexes
5.07.2.6. Polyalkene complexes
5.07.2.6.1. η4-Vinylketene complexes
5.07.2.6.2. η6-Cycloheptatriene complexes
5.07.2.6.3. η4-Quinone complexes
5.07.2.6.4. η4-Butadiene complexes
5.07.2.7. Polyalkenyl complexes
5.07.2.7.1. η5-Pentadienyl complexes (not including cyclohexadienyl complexes)
5.07.2.7.2. η5-Cyclohexadienyl complexes (and related species)
5.07.2.8. Complexes containing ηn-coordinated (n > 2) heteroatom-containing π ligands
5.07.3. Cyclic π ligands
5.07.3.1. Cyclopentadienyl complexes
5.07.3.1.1. Derivatives of cymantrene (I) synthesis and reactivity of complexes containing the ``(C5H5-xMex)Mn(CO)´´ frag ...
5.07.3.1.1.1. Synthesis of cymantrene derivatives from [(C5H5-xMex)Mn(CO)2L] (L = neutral ligand, x = 0-5) via substituti ...
5.07.3.1.1.2. Synthesis and reactivity of new cymantrene derivatives prepared via other methods
5.07.3.1.1.2.1. Derivatives with Group 16-based Ligands
5.07.3.1.1.2.2. Derivatives with Group 15-based Ligands
5.07.3.1.1.2.3. Derivatives with Group 14-based Ligands
5.07.3.1.1.2.4. Derivatives with Group 13-based Ligands
5.07.3.1.1.3. Oxidation of manganese(I) cyclopentadienyl/CO complexes
5.07.3.1.1.4. Miscellaneous chemistry of cymantrene and its derivatives
5.07.3.1.2. Derivatives of cymantrene (II) synthesis and reactivity of complexes containing the ``(C5H5-xMex)Mn(NO)´´ fra ...
5.07.3.1.3. Derivatives of cymantrene (III) [(C5H4R)Mn(CO)3] (R H, CyH2y+1 alkyl)
5.07.3.1.4. Derivatives of cymantrene (IV) [(C5H5-xRx)Mn(CO)3] (x = 2-5, R H or CyH2y+1 alkyl); not including fused poly ...
5.07.3.1.5. Derivatives of cymantrene (V) [(C5H5-xRx)Mn(CO)3] (C5H5-xRx = fused polycyclic cyclopentadienyl ligand)
5.07.3.1.5.1. Analogues of cymantrene featuring a fused cyclopentadienyl ligand prepared via salt metathesis
5.07.3.1.5.2. Analogues of cymantrene featuring a fused cyclopentadienyl ligand prepared via annulation
5.07.3.1.5.3. Derivatives of cymantrene with pentalene-based ligands
5.07.3.1.5.4. Analogues of cymantrene featuring a fused cyclopentadienyl ligand: Miscellaneous chemistry
5.07.3.1.6. Derivatives of cymantrene (VI) derivatives of cymantrene with both (a) one or more non-alkyl substituent on t ...
5.07.3.1.7. Derivatives of cymantrene (VII) manganese(I) dicarbonyl complexes with a chelating Lewis base-appended cyclop ...
5.07.3.1.8. Carbonyl-free complexes with one cyclopentadienyl ligand on Mn
5.07.3.1.9. Complexes with two cyclopentadienyl ligands on Mn
5.07.3.1.10. Miscellaneous cyclopentadienyl chemistry
5.07.3.2. Arene complexes
5.07.3.2.1. Synthesis and reactivity of cationic Mn(I) η6-arene complexes; [(η6-arene)Mn(CO)3)]+
5.07.3.2.2. Anionic manganese η6-arene complexes
5.07.3.2.3. Neutral manganese η6-arene complexes
5.07.3.2.4. Neutral manganese ηx (x < 6) arene complexes
5.07.3.2.5. Miscellaneous arene chemistry
5.07.3.3. Complexes with cyclic heteroatom-substituted π ligands
5.07.3.4. Miscellaneous (cyclic)
5.07.4. Concluding remarks
Acknowledgment
References
5.08 Organometallic Complexes of Technetium
5.08.1. Introduction
5.08.2. Technetium carbonyls and their halide and hydride derivatives
5.08.2.1. Binary and mixed metal carbonyls
5.08.2.2. Halo and hydrido technetium carbonyls
5.08.3. Other technetium carbonyl derivatives
5.08.3.1. Oxygen and sulfur
5.08.3.2. Nitrogen and phosphorus
5.08.4. Technetium isocyanides and their derivatives
5.08.4.1. Binary technetium isocyanides
5.08.4.2. Technetium isocyanide derivatives
5.08.5. Technetium cyclopentadienyl complexes and other π-complexes
5.08.5.1. Cyclopentadienyl complexes
5.08.5.2. Arene complexes
5.08.5.3. Other π-complexes
5.08.6. Derivatives containing single- or multiple-bonded η1-carbon groups
5.08.6.1. Alkyl/aryl complexes
5.08.6.2. Carbene complexes
5.08.6.3. Carbyne complexes
5.08.7. Structural data and 99Tc NMR studies
5.08.7.1. Structural data
5.08.7.2. 99Tc NMR
5.08.8. Conclusion and perspective
Acknowledgment
References
5.09 Organometallic Complexes of Group 5 Metals With Metal-Carbon Sigma and Multiple Bonds
5.09.1. Introduction: Group 5 organometallics as promising catalysts for efficient carbon-carbon bond formations
5.09.2. Organovanadium complexes and related chemistry
5.09.2.1. Vanadium complexes containing cyclopentadienyl ligands
5.09.2.2. Vanadium complexes containing monodentate or bidentate ligands
5.09.2.3. Vanadium complexes containing tridentate, tetradentate ligands
5.09.2.4. (Imido)vanadium complexes and some reaction chemistry
5.09.3. Organoniobium complexes and related chemistry
5.09.3.1. Niobium complexes containing cyclopentadienyl, hydridotris(pyrazolyl)borate ligands
5.09.3.2. Niobium complexes containing monodentate anionic donor ligands
5.09.3.3. Niobium complexes containing bidentate or tridentate anionic donor ligands
5.09.3.4. (Imido)niobium complexes and some reaction chemistry
5.09.4. Organotantalum complexes and related chemistry
5.09.4.1. Tantalum complexes containing cyclopentadienyl ligands
5.09.4.2. Tantalum complexes containing monodentate anionic donor ligands
5.09.4.3. Tantalum complexes containing bidentate or tridentate anionic donor ligands
5.09.4.4. (Imido)tantalum complexes and some reaction chemistry
5.09.5. Selected topics
5.09.5.1. Vanadium(V)-, niobium(V)-alkylidene complexes as catalysts for ring-opening metathesis polymerization (ROMP) of ...
5.09.5.1.1. Introduction: Synthesis of vanadium-, niobium-alkylidenes
5.09.5.1.2. Vanadium(V)-, niobium(V)-alkylidene complexes as catalysts for ring-opening metathesis polymerization (ROMP) ...
5.09.5.2. Solution XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) anal ...
5.09.5.2.1. Introduction
5.09.5.2.2. Solution XAS analysis of active species of vanadium complex catalysts in ethylene polymerization/dimerization
5.09.6. Concluding remarks
Acknowledgment
References
5.10 Group 6 Complexes With Metal-Carbon Sigma Bonds
Abbreviations
5.10.1. Introduction
5.10.2. Cr complexes
5.10.2.1. Alkyl and aryl complexes without Cp-type ligands
5.10.2.2. Alkyl and aryl complexes with Cp-type ligands
5.10.2.3. Alkyl and aryl complexes with metal-element multiple bonds
5.10.2.4. Alkynyl complexes
5.10.2.5. Multimetallic Cr complexes and clusters
5.10.3. Molybdenum and tungsten complexes
5.10.3.1. Alkyl and aryl complexes without Cp-type ligands
5.10.3.2. Alkyl and aryl complexes with Cp ligands and without NO ligands
5.10.3.3. Alkyl and aryl complexes with Cp and NO ligands
5.10.3.4. Complexes with metal-element multiple bonds
5.10.3.5. Alkynyl complexes
5.10.3.6. Multimetallic Mo and W complexes and clusters
5.10.4. Conclusion
References
5.11 Group 6 High Oxidation State Alkylidene and Alkylidyne Complexes
5.11.1. Introduction
5.11.2. Alkylidene complexes
5.11.2.1. Early tantalum chemistry
5.11.2.2. Tungsten and molybdenum alkylidenes
5.11.2.2.1. Discovery
5.11.2.2.2. Imido alkylidenes
5.11.2.2.2.1. Bisalkoxides
5.11.2.2.2.2. Biphenoxides
5.11.2.2.2.3. Pyrrolides
5.11.2.2.2.4. Monoaryloxide (or monoalkoxide) pyrrolide (MAP) complexes
5.11.2.2.3. Metallacyclobutanes
5.11.2.2.4. Decomposition and olefin complexes
5.11.2.2.5. Metallacyclopentanes
5.11.2.2.6. Oxo alkylidenes
5.11.2.2.7. Cationic alkylidenes
5.11.2.2.8. MCHX complexes
5.11.2.2.9. Disubstituted alkylidenes
5.11.2.2.10. Oxo- and imido-free alkylidenes
5.11.2.3. Chromium alkylidenes
5.11.3. Alkylidyne complexes
5.11.3.1. Discovery
5.11.3.2. Development of catalysts for alkyne metathesis
5.11.3.3. Alkyl/alkylidyne vs bisalkylidene
5.11.3.4. Other alkylidyne chemistry
5.11.4. Pincer alkylidenes and alkylidynes
5.11.5. NHC alkylidene and alkylidyne complexes
5.11.5.1. Molybdenum imido alkylidene complexes that contain a monodentate NHC
5.11.5.1.1. Bistriflates
5.11.5.1.2. Cationic monotriflates
5.11.5.1.3. Monotriflate monoalkoxides
5.11.5.1.4. Bisalkoxides
5.11.5.1.5. Pyrrolides
5.11.5.1.6. Halides
5.11.5.1.7. Cationic monoalkoxides
5.11.5.1.8. Carboxylates
5.11.5.1.9. Complexes that contain a chelating alkylidene
5.11.5.1.10. Ionically tagged complexes
5.11.5.1.11. Silica-supported complexes
5.11.5.2. Molybdenum imido alkylidene complexes that contain a chelating NHC
5.11.5.3. Neutral molybdenum alkylidyne complexes
5.11.5.4. Cationic molybdenum alkylidyne complexes
5.11.5.5. Supported molybdenum alkylidyne complexes
5.11.5.6. Tungsten alkylidene complexes
5.11.5.6.1. Oxo complexes
5.11.5.6.2. Imido alkylidene complexes
5.11.5.7. Alkoxide-based tungsten alkylidyne complexes
5.11.5.8. Halide-based tungsten alkylidyne and tungsten oxo alkylidene complexes derived therefrom
5.11.6. Conclusions and perspective
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of Volume 6
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 6
Preface
Complexes of Group 7 Metals with Metal-Carbon Sigma and Multiple Bonds
Nomenclature
6.01.1. Introduction
6.01.2. Alkyl complexes
6.01.2.1. M(I) complexes
6.01.2.1.1. Synthesis
6.01.2.1.1.1. By transmetalation reactions with main group metal alkyls
6.01.2.1.1.2. By reactions of [LnM(I)]- complexes with electrophilic RX reagents
6.01.2.1.1.3. By alkene insertion reactions
6.01.2.1.1.4. By decarbonylation of acyl complexes
6.01.2.1.1.5. By reduction of carbonyl complexes
6.01.2.1.1.6. By other routes
6.01.2.1.2. Reactivity
6.01.2.1.2.1. Homolytic cleavage of MC bonds
6.01.2.1.2.2. Protic cleavage of MC bonds
6.01.2.1.2.3. Insertion reactions with CO and CNR
6.01.2.1.2.4. Reductive elimination and σ-bond metathesis reactions
6.01.2.1.2.5. Oxidation and α-H abstraction
6.01.2.2. M(II) alkyl complexes
6.01.2.2.1. Synthesis
6.01.2.2.1.1. MR2 and related complexes
6.01.2.2.1.2. M(R)(X) (X=halide, amide) and related complexes
6.01.2.2.1.3. Alkyl complexes supported by polydentate ligands
6.01.2.2.1.4. Anionic alkyl complexes
6.01.2.2.2. Reactivity
6.01.2.2.2.1. Acid-base reactions
6.01.2.2.2.2. CC bond activation
6.01.2.2.2.3. σ-bond metathesis reactions
6.01.2.2.2.4. Addition to unsaturated substrates
6.01.2.2.2.5. Reactions with oxygen
6.01.2.2.2.6. Nucleophilic substitution and addition reactions
6.01.2.3. M(III) and M(IV) complexes
6.01.2.4. M(V) complexes
6.01.2.4.1. Synthesis
6.01.2.4.1.1. By transmetalation reactions of main group alkyls
6.01.2.4.1.2. By insertion reaction of alkenes
6.01.2.4.1.3. By cyclometalation and CS bond activation reactions
6.01.2.4.1.4. By modification of preformed alkyl complexes
6.01.2.4.2. Reactivity
6.01.2.5. M(VI) and M(VII) complexes
6.01.3. Aryl complexes
6.01.3.1. M(I) complexes
6.01.3.1.1. Complexes with terminal η1-aryl ligands
6.01.3.1.1.1. Synthesis
6.01.3.1.1.2. Reactivity
6.01.3.1.2. Complexes with bridging aryl ligands
6.01.3.1.3. Cyclometalated complexes
6.01.3.1.3.1. Synthesis
6.01.3.1.3.1.1. Mn(I) complexes with bidentate cyclometalated aryl ligands
6.01.3.1.3.1.2. Re(I) complexes with bidentate cyclometalated aryl ligand
6.01.3.1.3.1.3. Complexes with polydentate cyclometalated aryl ligands
6.01.3.1.3.2. Reactivity of M(I) cyclometalated aryl complexes
6.01.3.1.3.2.1. Ligand dissociation and substitution reactions
6.01.3.1.3.2.2. Cleavage of MC bonds by electrophiles
6.01.3.1.3.2.3. Carbene insertion reactions
6.01.3.1.3.2.4. Insertion reactions of unsaturated substrates and related reactions
6.01.3.2. M(II) complexes
6.01.3.2.1. Synthesis
6.01.3.2.2. Reactivity
6.01.3.3. M(III) complexes
6.01.3.3.1. Mn(III) complexes
6.01.3.3.2. Re(III) complexes
6.01.3.4. M(IV) complexes
6.01.3.5. M(V) complexes
6.01.3.6. M(VII) complexes
6.01.4. Vinyl complexes
6.01.4.1. Synthesis
6.01.4.1.1. Complexes with η1-vinyl or η2-vinyl ligands
6.01.4.1.1.1. By nucleophilic substitution reactions of vinylhalides
6.01.4.1.1.2. By insertion reactions of alkynes and allenes
6.01.4.1.1.3. By oxidative addition of vinyl halides
6.01.4.1.1.4. By transmetalation reactions with anionic vinyl reagents
6.01.4.1.1.5. By nucleophilic addition to alkyne, vinylidene, allenylidene and carbonyl complexes
6.01.4.1.2. Cyclometalated vinyl complexes
6.01.4.1.2.1. Complexes with bidentate cyclometalated vinyl ligands
6.01.4.1.2.1.1. By cyclometalation reactions
6.01.4.1.2.1.2. By insertion or nucleophilic addition reactions of alkynes
6.01.4.1.2.1.3. By miscellaneous routes
6.01.4.1.2.2. Complexes with polydentate cyclometalated vinyl ligands
6.01.4.1.3. Complexes with bridging vinyl ligands
6.01.4.2. Reactivity
6.01.4.2.1. Protonation reactions
6.01.4.2.2. Reductive elimination
6.01.4.2.3. Reactions in which vinyl complexes are implicated
6.01.5. Alkynyl complexes
6.01.5.1. Synthesis
6.01.5.1.1. M(I) complexes
6.01.5.1.2. M(II) and M(III) complexes
6.01.5.1.3. M(V) complexes
6.01.5.1.4. Cluster complexes
6.01.5.2. Reactivity
6.01.6. Acyl and related complexes
6.01.6.1. Synthesis
6.01.6.1.1. Acyl and formyl complexes LnMCOR (RH, alkyl, aryl)
6.01.6.1.2. Alkoxycarbonyl (metallaester) complexes LnMC(O)OR
6.01.6.1.3. Carbamoyl complexes LnMC(O)NR2
6.01.6.1.4. Bora-acyl complexes
6.01.6.1.5. Iminoacyl, imidate and related complexes LnMC(NR)R
6.01.6.2. Reactivity
6.01.7. Carbene complexes
6.01.7.1. Carbene complexes without a hetero substituent at the carbene carbon
6.01.7.1.1. Synthesis
6.01.7.1.1.1. By nucleophilic addition to carbyne complexes
6.01.7.1.1.2. By metathesis reactions of borylene complexes with carbonyl compounds
6.01.7.1.1.3. By reactions of quinolizinium salts
6.01.7.1.1.4. By activation of halocarbons
6.01.7.1.1.5. By protonation of vinyl complexes
6.01.7.1.1.6. By electrophilic abstraction of alkyl complexes
6.01.7.1.1.7. By reactions of diazoalkanes
6.01.7.1.1.8. By activation of alkenes
6.01.7.1.1.9. Preparation of supported carbene complexes
6.01.7.1.2. Reactivity
6.01.7.1.2.1. Migratory insertion reactions
6.01.7.1.2.2. Deprotonation reactions
6.01.7.1.2.3. Nucleophilic addition reactions
6.01.7.1.2.4. Metathesis and cycloaddition reactions with alkenes
6.01.7.2. Carbene complexes with one oxygen substituent at the carbene carbon
6.01.7.2.1. Synthesis
6.01.7.2.1.1. By Fischer synthesis
6.01.7.2.1.2. By electrophilic addition to acyl complexes
6.01.7.2.1.3. By electrophilic abstraction of alkyl complexes
6.01.7.2.1.4. By nucleophilic addition to carbyne or vinylidene complexes
6.01.7.2.1.5. By reactions of boranes with carbonyl complexes
6.01.7.2.2. Reactivity
6.01.7.3. Complexes with one SR or SeR substituent at the carbene carbon
6.01.7.4. Carbene complexes with a PR2 substituent at the carbene carbon
6.01.7.5. Carbene complexes with one nitrogen substituent at the carbene carbon
6.01.7.6. Complexes with N,N-hetero carbenes
6.01.7.6.1. Complexes with acyclic diaminocarbenes
6.01.7.6.2. A brief comment on complexes with N-heterocyclic carbenes (NHCs)
6.01.7.7. Complexes with N,O-, N,S- and N,B-hetero carbenes
6.01.8. Vinylidene and allenylidene complexes
6.01.8.1. Synthesis of vinylidene complexes and related complexes
6.01.8.1.1. By protonation of alkynyl complexes
6.01.8.1.2. By isomerization of alkynes
6.01.8.1.3. By CC bond activation of alkynols
6.01.8.1.4. Preparation of MCM complexes
6.01.8.2. Synthesis of allenylidene complexes
6.01.8.3. Reactivity of vinylidene and allenylidene complexes
6.01.8.3.1. Electrophilic addition, abstraction and oxidative coupling reactions
6.01.8.3.2. Deprotonation reactions
6.01.8.3.3. Nucleophilic addition reactions
6.01.8.3.4. Formation of vinylidene bridged dinuclear complexes and clusters
6.01.8.3.5. Reactions in which vinylidene complexes are implicated
6.01.9. Carbyne complexes
6.01.9.1. Synthesis
6.01.9.1.1. By electrophilic abstraction of Fischer carbenes
6.01.9.1.2. By oxidation of vinylidene complexes
6.01.9.1.3. By electrophilic addition of vinylidene or allenylidene complexes
6.01.9.1.4. By oxidation of dinuclear complexes with a CCHCHC or CCCC bridge
6.01.9.1.5. By activation of hydrocarbons and halocarbons
6.01.9.1.6. By electrophilic addition to carbonyl and reactions of phosphorus ylides
6.01.9.2. Reactivity
6.01.9.2.1. Migratory insertion reactions
6.01.9.2.2. Alkyne metathesis and formation of metallacyclobutadienes
6.01.9.2.3. Reactions of phosphoniocarbyne complexes
6.01.9.2.4. Redox reactions
6.01.9.2.5. Deprotonation reactions
6.01.9.2.6. Nucleophilic addition reactions
6.01.9.2.7. Reactions with anionic metal-carbonyl complexes
6.01.10. Metallacarbocycles
6.01.10.1. Four-membered metallacycles
6.01.10.2. Five-membered metallacycles
6.01.10.3. Six-membered metallacycles
6.01.11. Conclusion
References
N-Heterocyclic and Mesoionic Carbene Complexes of Group 5 and Group 6 Metals
6.02.1. Introduction
6.02.2. Vanadium NHC complexes
6.02.2.1. Synthesis from various precursors
6.02.2.2. Complexes bearing arene-appended NHCs
6.02.2.3. Complexes bearing tridentate NHCs
6.02.2.4. NHC-induced reactions
6.02.3. Niobium NHC complexes
6.02.3.1. Complexes bearing monodentate NHCs
6.02.3.2. Complexes bearing multidentate NHCs
6.02.4. Tantalum NHC complexes
6.02.4.1. Complexes bearing monodentate NHCs
6.02.4.2. Complexes bearing bidentate NHCs
6.02.4.3. Complexes bearing tridentate NHCs
6.02.5. Chromium NHC complexes
6.02.5.1. Chromium (0) NHC complexes
6.02.5.2. Chromium (I), (II), (III) NHC complexes
6.02.5.2.1. Chromium NHC complexes bearing η5-bound cyclopentadienyl rings
6.02.5.2.2. Chromium indenyl NHC complexes
6.02.5.2.3. Chromium fluorenyl NHC complexes
6.02.5.2.4. Chromium Di-NHC complexes
6.02.5.2.5. Chromium tetra-NHC complexes
6.02.5.2.6. Chromium NHC complexes bearing pincer ligands
6.02.5.2.7. Chromium NHC complexes bearing amidine ligands
6.02.5.2.8. Chromium NHC complexes bearing chiral ligands
6.02.5.2.9. Chromium NHC complexes bearing N-phosphanyl substituents
6.02.5.2.10. Chromium complexes bearing imino-functionalized NHCs
6.02.5.3. Chromium (VI) NHC complexes
6.02.5.4. Chromium (0) mesoionic tetrazolylidene complexes
6.02.6. Molybdenum NHC complexes
6.02.7. Tungsten NHC complexes
6.02.7.1. Tungsten (0) NHC carbonyl complexes
6.02.7.1.1. Structure and synthesis of monodentate tungsten (0) NHC carbonyl complexes
6.02.7.1.2. Structure and synthesis bidentate tungsten(0) NHC carbonyl complexes
6.02.7.1.3. Template-controlled synthesis of NHC ligands via the use of isocyanides
6.02.7.1.4. Tungsten carbonyl complexes bearing an abnormal NHC (aNHC)
6.02.7.1.5. Tungsten allyl and cyclopentadienyl carbonyl complexes
6.02.7.2. Tungsten (VI) NHC complexes without alkylidene or alkylidyne ligands
6.02.8. Summary
References
N-Heterocyclic and Mesoionic Carbene Complexes of Group 7 Metals
Abbreviations
6.03.1. Introduction
6.03.2. Manganese NHC complexes
6.03.2.1. Mn(0) NHC complexes
6.03.2.2. Mn(I) NHC complexes
6.03.2.2.1. Mn(I) carbonyl complexes with monodentate NHCs
6.03.2.2.2. Mn(I) tricarbonyl complexes with bidentate NHCs
6.03.2.2.3. Mn(I) carbonyl complexes with tridentate NHCs
6.03.2.3. Mn(II), Mn(III), Mn(IV), and Mn(V) NHC complexes
6.03.2.4. Mn triazolylidene complexes
6.03.3. Technetium NHC complexes
6.03.4. Rhenium NHC complexes
6.03.4.1. Re(0) NHC complexes
6.03.4.2. Re(I) NHC complexes
6.03.4.2.1. Re(I) tetracarbonyl complexes with monodentate NHC ligands
6.03.4.2.2. Re(I) tricarbonyl complexes with monodentate NHC ligands
6.03.4.2.3. Re(I) tricarbonyl complexes with bidentate chelating NHCs
6.03.4.2.3.1. With chelating mixed NHC-pyridine ligands
6.03.4.2.3.2. With chelating bis-NHC ligands
6.03.4.3. Re(V) NHC complexes
6.03.4.4. Re(VII) NHC complexes
6.03.4.5. Rhenium triazolylidene complexes
6.03.5. Conclusions
References
Organometallic Complexes of Group 5 With π-Acidic Ligands
Abbreviations
6.04.1. Introduction
6.04.2. Carbonyl complexes
6.04.2.1. Synthesis and properties of homoleptic ionic compounds
6.04.2.2. Synthesis and properties of V(CO)6 and other homoleptic neutral compounds
6.04.2.3. Reactivity of [V(CO)6]
6.04.2.3.1. Reactions involving the monoelectron reduction of [V(CO)6]
6.04.2.3.2. Other reactions involving vanadium oxidation and nonredox substitution reactions
6.04.2.4. Carbonyl-hydrido compounds
6.04.2.5. Reactivity of metal(-I) hexacarbonylates, synthesis, and properties of other nonhomoleptic compounds
6.04.2.6. Carbon monoxide activation reactions
6.04.3. Isocyanide compounds
6.04.3.1. Homoleptic compounds
6.04.3.2. Heteroleptic compounds
6.04.3.3. Isocyanide activation reactions
6.04.4. Cyanide compounds
6.04.4.1. Chemistry in water, cluster compounds, and supramolecular assemblies
6.04.4.2. Metallocene systems
6.04.4.3. Other nonaqueous group 5 metal cyanides and activation reactions
6.04.5. Alkynyl compounds
6.04.6. Other π-acidic ligands
6.04.6.1. Nitrosyl compounds
6.04.6.2. Dinitrogen compounds
6.04.6.3. α-Diimine compounds
6.04.7. Concluding remarks
References
Group VI Metal Complexes of Carbon Monoxide and Isocyanides
6.05.1. Introduction
6.05.2. Homoleptic carbonyl complexes
6.05.2.1. Chemical synthesis
6.05.2.2. Experimental physical studies
6.05.2.2.1. Chromium carbonyls
6.05.2.2.2. Molybdenum and tungsten carbonyls
6.05.2.3. Computational work
6.05.2.3.1. Chromium carbonyls
6.05.2.3.2. Molybdenum and tungsten carbonyls
6.05.3. Alkane complexes
6.05.4. Dihydrogen, hydride, borane-Lewis base adducts and σ-alane complexes
6.05.4.1. Dihydrogen and hydride complexes
6.05.4.2. Complexes containing borane-Lewis base adducts as ligands
6.05.4.3. σ-Alane complexes
6.05.5. Complexes with silicon-containing ligands
6.05.6. Complexes with group VI metal-boron bonds
6.05.6.1. Synthesis and reactivity of Braunschweig borylene complexes
6.05.6.2. Other classes of group VI metal complexes containing boron
6.05.7. Complexes with group VI metal-nitrogen bonds
6.05.7.1. sp3 Nitrogen-ligating
6.05.7.2. sp2 Nitrogen-ligating
6.05.7.2.1. Monodentate ligands
6.05.7.2.2. Tris(pyrazol-1-yl)borates, bis(pyrazol-1-yl)methanes and related scorpionates
6.05.7.2.3. Bidentate ligands
6.05.7.2.3.1. 2,2-Bipyridine and related ligands
6.05.7.2.3.2. 1,10-Phenanthroline and related ligands
6.05.7.2.3.3. Pyridine-based ligands with 2-(N-donor)substituents
6.05.7.2.3.4. Imidazole-N-imines, iminopyridines and related ligands
6.05.7.2.3.5. Diimines and related ligands
6.05.7.3. sp Nitrogen-ligating
6.05.7.4. Ligands that coordinate by nitrogen and oxygen atoms
6.05.8. Complexes with group VI metal-phosphorus bonds
6.05.8.1. Triphenylphosphine and tricyclohexylphosphine
6.05.8.2. Monophenyl and diphenyl tertiary phosphines
6.05.8.3. Phosphines with fluorinated substituents
6.05.8.4. Phosphorus ligands with PSi bonds
6.05.8.5. Monodentate phosphorus ligands with boron-based substituents
6.05.8.6. Streubel phosphinidenoid and phosphinidenoid-derived complexes
6.05.8.6.1. Oxaphosphiranes
6.05.8.7. 2H-Azaphosphirenes and related complexes
6.05.8.8. Phosphirane and phosphirene complexes
6.05.8.9. Complexes with P-bound five- and six-membered rings
6.05.8.10. Phosphaalkenes, phosphaalkynes, phosphaallenes and related ligands
6.05.8.11. Phosphanylboranes, arsanylboranes and related ligands
6.05.8.12. P-bound ligands with PP bonds
6.05.8.13. Aminophosphines and related ligands
6.05.8.14. Phosphido-bridged and related complexes
6.05.8.15. Phosphite, phosphonite and related ligands
6.05.8.16. Bidentate phosphines
6.05.8.16.1. N,N-Bis(disubstituted-phosphino)amines and related ligands
6.05.8.16.2. Cyclic P-bound ligands that include nitrogen atoms within the cyclic system
6.05.8.16.3. Ligands that incorporate heterocycle and carborane backbones
6.05.8.16.4. Anionic and cationic bidentate phosphines
6.05.8.17. Tridentate phosphines
6.05.8.18. Ligands that coordinate by both phosphorus and nitrogen
6.05.9. Complexes with group VI metal-oxygen bonds
6.05.10. Complexes with group VI metal-halide bonds
6.05.11. Complexes with group VI metal-gallium and indium bonds
6.05.12. Complexes with group VI metal-germanium, tin and lead bonds
6.05.13. Complexes with group VI metal-arsenic, antimony and bismuth bonds
6.05.13.1. Complexes with group VI metal-arsenic bonds
6.05.13.2. Complexes with group VI metal-antimony and bismuth bonds
6.05.14. Complexes with group VI metal-sulfur, selenium and tellurium bonds
6.05.14.1. Complexes with group VI metal-sulfur, selenium and tellurium bonds and thiocarbonyl ligands
6.05.14.1.1. Monodentate S-ligands and thiocarbonyls
6.05.14.1.2. κ2-S ligands
6.05.14.1.3. Tridentate and scorpionate ligands that feature sulfur donors
6.05.14.1.4. Mixed S,N and S,P ligands
6.05.14.1.5. Complexes containing bridging thiolate and telluride ligands
6.05.14.1.6. Sulfur-ligating metalloligands
6.05.14.1.7. Other heterobimetallics with group VI metal-S, Se and Te bonds
6.05.14.1.8. Complexes containing chalcogenide clusters
6.05.14.1.9. Complexes containing As/S and P/S cages
6.05.14.1.10. Other complexes with group VI metal-Se and Te bonds
6.05.15. Complexes that incorporate metallocenes
6.05.16. Group VI metal isocyanide complexes
6.05.16.1. Alkyl, aryl and halogenated isocyanides
6.05.16.2. Chelating isocyanides
6.05.16.3. m-Terphenyl isocyanides
6.05.16.4. Homoleptic arylisocyanides
6.05.16.5. Mono- and diisocyanoazulenes
6.05.16.6. Cyanide as a terminal and bridging ligand
6.05.17. Concluding remarks
Acknowledgment
References
Carbonyl and Isocyanide Complexes of Manganese
Abbreviations
6.06.1. Introduction
6.06.2. Brief discussion about Mn-CO starting materials and their preparation
6.06.2.1. Commercially available starting materials
6.06.2.2. Common starting materials derived from commercially available materials in one step
6.06.2.2.1. Sodium pentacarbonyl manganate
6.06.2.2.2. Pentacarbonylhydridomanganese(I)
6.06.2.2.3. Pentacarbonylmethylmanganese(I)
6.06.2.2.4. [Et4N][Mn(CO)4(Br)2]
6.06.2.2.5. [Mn(CO)4(μ-Br)]2
6.06.2.2.6. Acenaphthene(tricarbonyl)manganese(I) (MTT-a)
6.06.2.2.7. Other compounds
6.06.3. Mn carbonyl complexes with monodentate ligands
6.06.3.1. Monodentate carbon-based ligands (acyls, alkyls, and carbenes)
6.06.3.1.1. Acyls
6.06.3.1.2. Alkyls
6.06.3.1.3. Carbenes
6.06.3.2. Monodentate carbon-group ligands (silicon, germanium, stannyl, and lead)
6.06.3.2.1. Mn-CO complexes with silicon ligands
6.06.3.2.2. Mn-CO complexes with germanium ligands
6.06.3.2.3. Mn-CO complexes with tin and lead ligands
6.06.3.3. Monodentate pnictogen-based ligands
6.06.3.3.1. Amine, amide and other N-donor group ligands
6.06.3.3.1.1. Synthesis of Mn(CO)3(py)2Br: A commonly used starting material
6.06.3.3.1.2. Other monodentate N-donor Mn-CO complexes
6.06.3.3.2. Phosphorus-derived donor group ligands
6.06.3.3.3. Antimony- and bismuth-derived donor group ligands
6.06.3.4. Other monodentate ligands: Chalcogenide and boron-group ligands
6.06.3.4.1. Sulfur-derived ligands
6.06.3.4.2. Boron-group-derived ligands
6.06.4. Mn carbonyl complexes supported with bidentate ligands
6.06.4.1. N,N ligands
6.06.4.1.1. Bipyridine, phenanthroline, and related bidentate N,N ligands
6.06.4.1.1.1. Generally applicable synthetic procedures for bidentate N,N (and likely other) ligands using solvated Mn-CO ...
6.06.4.1.1.2. Electrocatalytic, photocatalytic, and hydrogenative CO2 reduction using Mn-CO complexes supported with bipy ...
6.06.4.1.1.3. Bipy-supported Mn(CO)3 subunits in photochemical CO releasing molecules (photoCORMs)
6.06.4.1.1.4. Additional manganese carbonyl compounds supported with functionalized bipy ligands
6.06.4.1.2. Pyridyl-imidazole, -pyrazolyl, -imine, and -amine ligands
6.06.4.1.3. Other NN ligands
6.06.4.1.4. Alternative or unusual strategies for synthesis of N,N M-CO complexes
6.06.4.2. C,X ligands (X=N, C, O)
6.06.4.2.1. C,N bidentate ligands
6.06.4.2.2. C,O bidentate ligands
6.06.4.2.3. C,X (X=O, N, C) bidentate ligands where the C-donor is a carbene
6.06.4.3. P,P and P,X ligands (X=C, N, O, S)
6.06.4.3.1. P,P ligands
6.06.4.3.2. Catalytic alkene hydrogenation with Mn(I)-CO compounds
6.06.4.3.3. P,X (X=C, N, O, S) ligands
6.06.4.4. S,S and S,X (X=C, N, O) and other bidentate ligands (Se and Te)
6.06.4.4.1. S,S ligands
6.06.4.4.2. S,X (X=C, N, O) ligands
6.06.4.4.3. Other types of bidentate ligands
6.06.4.4.3.1. Se,Se ligands
6.06.4.4.3.2. Se,S ligands
6.06.4.4.3.3. Te,Te ligands
6.06.4.4.3.4. Si,Si ligands
6.06.5. Mn carbonyl complexes with tridentate ``pincer´´ ligands
6.06.5.1. PNP pincer ligands
6.06.5.1.1. Bisarylamido bisphosphine PNP
6.06.5.1.2. R2PCH2CH2N(H)CH2CH2PR2 (319) (i.e., bis-(2-(diisopropylphosphine)ethyl)amine) PNP
6.06.5.1.3. Pyridine-derived PNP
6.06.5.2. PNN and other P-containing pincer ligands
6.06.5.2.1. Pyridine-derived PNN ligands
6.06.5.2.2. Pyrrole-derived PNP ligands
6.06.5.2.3. Amine-derived PNN ligands
6.06.5.2.4. PCP and PPC pincer
6.06.5.2.5. POP pincer
6.06.5.3. Non-phosphine pincer ligands
6.06.5.3.1. Non-terpyridine
6.06.5.3.1.1. NNN and CNC pincer
6.06.5.3.1.2. Mixed N,S pincer
6.06.5.3.2. Terpyridine
6.06.5.4. nuCO FTIR data for Mn-CO complexes with pincer and fac-coordinated ligands
6.06.6. Mn carbonyl complexes with facially coordinating tridentate ligands
6.06.6.1. PNP, PNN, PPP and other phosphorus containing ``scorpionates´´
6.06.6.1.1. PNP and PNN facially coordinating ligands
6.06.6.1.2. PPP and other P-containing facially coordinating ligands
6.06.6.1.3. Facially coordinating ligands containing borohydride donors
6.06.6.2. SSS and related S-containing scorpionates
6.06.6.3. NNN and related scorpionates
6.06.6.3.1. {Tp}Mn(CO)3 and [{Tpm}MnCO3]+ complexes and closely related molecules
6.06.6.3.2. Photochemical CO releasing molecules (i.e., photoCORM, CORM)
6.06.7. Mn carbonyl complexes with tetradentate ligands
6.06.8. Multinuclear Mn complexes with μ-X ligands (e.g., phosphido, thiolato, etc.) and clusters
6.06.8.1. μ-Hydrido complexes
6.06.8.2. μ-Chalcogenide
6.06.8.2.1. μ-OH
6.06.8.2.2. μ-Thiolato
6.06.8.2.3. μ-S, Se, and Te
6.06.8.3. μ-Pnictogen
6.06.8.3.1. Phosphinidene bridges
6.06.8.3.2. Phosphido bridges
6.06.8.3.3. Elemental phosphorus bridges
6.06.8.4. Unsupported MMn bonds and other clusters
6.06.8.4.1. Unsupported Mn-Pt complexes
6.06.8.4.2. Other examples of unsupported MMn bonds
6.06.8.4.3. Clusters
6.06.9. Chemistry of Mn-CNR complexes
6.06.9.1. Preparation of simple Mn(I)-CNR complexes
6.06.9.2. Functionalization of CNR ligands and chemistry of resulting species
6.06.9.2.1. Diverse reactivity of Mn-CNR
6.06.9.2.1.1. Reactivity of [{bipy}Mn(CO)3(CNR)]+ (631)
6.06.9.2.1.2. Reactivity of acyclic carbenes 632 derived from Mn-CNR (631)
6.06.9.3. Chemistry of bulky Mn-CNR complexes
6.06.9.4. Metalloisocyanides
6.06.10. Mn-CO compounds in materials and supramolecular chemistry
6.06.10.1. Mn-CO as precursors to Mn-containing materials
6.06.10.2. Immobilization of Mn-CO complexes
6.06.10.3. Supramolecular coordination chemistry of Mn-CO complexes
6.06.10.3.1. Self-assembled molecular squares
6.06.10.3.2. Mn-CO compounds as potential building blocks in self-assembled structures
References
Carbonyl and Isocyanide Complexes of Rhenium
Abbreviations
6.07.1. Introduction
6.07.2. Rhenium carbonyl complexes
6.07.2.1. Re(0) carbonyls
6.07.2.1.1. Preparation and reactivity
6.07.2.1.1.1. Re(0) complexes prepared using [Re2(CO)8(NCMe)2]
6.07.2.1.1.2. Re(0) complexes via reductive elimination of [Re2(CO)8(μ-H)(μ-η1,η2-CHCHR)]
6.07.2.1.1.3. Re(0) complexes prepared from the reaction between rhenium(I) and rhenate(I) complexes
6.07.2.1.1.4. Carbonyl ligand substitution in dinuclear Re(0) complexes
6.07.2.2. Mononuclear Re(I) carbonyl complexes
6.07.2.2.1. Preparation
6.07.2.2.1.1. [Re2(CO)10] to Re(I) carbonyl precursor complexes
6.07.2.2.1.2. [Re(CO)5]+ fragment
6.07.2.2.1.3. [Re(CO)4]+ fragment
6.07.2.2.1.4. [Re(CO)3]+ fragment
6.07.2.2.1.5. [Re(CO)2]+ fragment
6.07.2.2.1.6. [Re(CO)]+ fragment
6.07.2.2.2. Reactivity
6.07.2.2.2.1. Carbonyl ligand substitution
6.07.2.2.2.2. Nucleophilic attack on carbonyl ligand
6.07.2.2.2.2.1. Conversion of carbonyl ligand to N-heterocyclic carbene (NHC) ligand
6.07.2.2.2.2.2. Nucleophilic attack on carbonyl to form carbamoyl
6.07.2.3. Polynuclear carbonyl rhenium(0/I) complexes
6.07.2.3.1. Homopolynuclear carbonyl rhenium(I) complexes
6.07.2.3.2. Polymers functionalized with tricarbonyl Re(I) diimine complexes
6.07.2.3.3. Heteropolynuclear supramolecular systems with tricarbonyl rhenium units
6.07.2.3.4. Heterometallic carbonyl rhenium clusters with Re-metal interactions/bonds
6.07.2.4. Re(II) and Re(III) carbonyl complexes
6.07.2.4.1. Re(II) carbonyl complexes
6.07.2.4.1.1. Oxidation of Re(0) and Re(I) carbonyl complexes
6.07.2.4.2. Re(III) carbonyl complexes
6.07.3. Rhenium isocyanide complexes
6.07.3.1. Re(I) isocyanide
6.07.3.1.1. Mono-, di-, and tri-isocyano Re(I) complexes {[Re(CNR)n]+ (n=1-3)}
6.07.3.1.2. Tetra-, penta- and hexa- isocyano Re(I) complexes {[Re(CNR)n]+ (n=4-6)}
6.07.3.1.3. Reactivity of isocyano Re(I) complexes
6.07.3.1.3.1. Formation of N-heterocyclic carbene complexes
6.07.3.1.3.2. Formation of acyclic carbene complexes
6.07.3.2. Re(III) isocyanide
6.07.3.3. Re(V) isocyanide
6.07.4. Applications
6.07.4.1. Photophysics of luminescent carbonyl and isocyano rhenium complexes
6.07.4.2. Energy-transfer photosensitizers
6.07.4.3. Photocatalysis
6.07.4.4. Biomedical applications
6.07.5. Conclusion
Acknowledgment
References
Organometallic Complexes of Group 5 Metals With Pincer and Noninnocent Ligands
6.08.1. Introduction
6.08.2. Vanadium
6.08.2.1. Introduction
6.08.2.2. Pincer compounds
6.08.2.2.1. Neutral ligands
6.08.2.2.2. Monoanionic ligands
6.08.2.2.3. Dianionic ligands
6.08.2.3. Noninnocent ligands
6.08.3. Niobium
6.08.3.1. Introduction
6.08.3.2. Pincer complexes
6.08.3.2.1. Neutral ligands
6.08.3.2.2. Monoanionic ligands
6.08.3.2.3. Dianionic ligands
6.08.3.2.4. Trianionic ligands
6.08.3.3. Noninnocent ligands
6.08.4. Tantalum
6.08.4.1. Introduction
6.08.4.2. Pincer compounds
6.08.4.2.1. Neutral ligands
6.08.4.2.2. Monoanionic ligands
6.08.4.2.3. Dianionic ligands
6.08.4.2.4. Trianionic ligands
6.08.4.3. Noninnocent ligands
6.08.5. Conclusions
References
Organometallic Pincer Complexes With Group 6 Metals
Abbreviations
6.09.1. Introduction
6.09.2. Complexes with symmetric pincer ligands
6.09.2.1. NCN ligands
6.09.2.2. OCO ligands
6.09.2.3. ONO ligands
6.09.2.4. CNC and CSC ligands
6.09.2.5. NNN ligands
6.09.2.6. SNS ligands
6.09.2.7. PNP ligands
6.09.2.8. PCP ligands
6.09.2.9. P-arene-P ligands
6.09.2.10. PPP, PSP, SPS, and SSS ligands
6.09.3. Complexes with asymmetric pincer ligands
6.09.4. Conclusion
Acknowledgment
References
Organometallic Complexes of Group 7 Metals With Pincer and Noninnocent Ligands
6.10.1. Introduction
6.10.2. Manganese complexes with pincer and noninnocent ligands
6.10.2.1. Mn carbonyls and catalytic applications
6.10.2.1.1. Mn PNP pincer complexes with carbonyls and catalytic applications
6.10.2.1.1.1. Synthesis
6.10.2.1.1.2. Methanol oxidation
6.10.2.1.1.3. CC bond-forming reactions
6.10.2.1.1.4. 2 and 3-Component heterocycle synthesis
6.10.2.1.1.5. Dehydrogenative alcohol coupling
6.10.2.1.1.6. Hydrogenation of carbonyl compounds
6.10.2.1.1.7. Hydrogenation of nitriles
6.10.2.1.1.8. Hydrogenation of alkynes
6.10.2.1.1.9. C-N coupling from alcohols and amines
6.10.2.1.2. Mn PNN pincer complexes with carbonyls and catalytic applications
6.10.2.1.2.1. Aza-Michael additions to unsaturated nitriles
6.10.2.1.3. Mn NNN pincer complexes with carbonyls and catalytic applications
6.10.2.1.4. Mn CNC pincer complexes with carbonyls and catalytic applications
6.10.2.2. Mn pincer complexes with MnC bonds and no carbonyls
6.10.3. Rhenium complexes with pincer and noninnocent ligands
6.10.3.1. Re carbonyls and catalytic applications
6.10.3.1.1. Rhenium PNP catalysts for the hydrogenation of carbonyls
6.10.3.1.2. Rhenium CNC pincers with carbene ligands
6.10.3.1.3. Rhenium pincers with NNN ligands
6.10.3.2. Re non-carbonyls and catalytic applications
6.10.3.2.1. Rhenium alkyls and carbonyl insertions
6.10.3.2.1.1. High-valent Re N-heterocyclic carbenes for O-atom transfer reactions
6.10.4. Technetium complexes with pincer ligands
6.10.5. Conclusion
Acknowledgment
References
Organometallic Tri- and Polynuclear Clusters of Tantalum, Niobium and Group 6 and 7 Transition Metals
6.11.1. Background
6.11.1.1. Preface
6.11.1.2. Synthetic methods
6.11.1.3. Electron counting
6.11.2. Clusters with MC bonds exclusively to CO or Cp-type organic ligands
6.11.2.1. Homonuclear clusters of Group 5-7 metals
6.11.2.1.1. Homonuclear clusters of Group 5 metals
6.11.2.1.1.1. Trinuclear clusters of Nb
6.11.2.1.1.2. Trinuclear clusters of Ta
6.11.2.1.2. Homonuclear clusters of Group 6 metals
6.11.2.1.2.1. Trinuclear clusters of Cr
6.11.2.1.2.2. Trinuclear clusters of Mo
6.11.2.1.2.3. Trinuclear clusters of W
6.11.2.1.2.4. Tetranuclear clusters of Cr
6.11.2.1.2.5. Tetranuclear clusters of Mo
6.11.2.1.2.6. Pentanuclear clusters of Mo
6.11.2.1.3. Homonuclear clusters of Group 7 metals
6.11.2.1.3.1. Trinuclear clusters of Mn
6.11.2.1.3.2. Trinuclear clusters of rhenium
6.11.2.1.3.3. Tetranuclear clusters of Mn
6.11.2.1.3.4. Tetranuclear clusters of Re
6.11.2.1.3.5. Octahedral hexanuclear clusters of Re
6.11.2.1.3.6. Oligomerization of dinuclear rhenium fragments
6.11.2.2. Heteronuclear clusters of Groups 5-7 metals
6.11.2.2.1. Heterometallic trinuclear clusters
6.11.2.2.1.1. Cr2Mo clusters
6.11.2.2.1.2. Cr2W clusters
6.11.2.2.1.3. CrMo2 clusters
6.11.2.2.1.4. CrW2 clusters
6.11.2.2.1.5. CrMn2 clusters
6.11.2.2.1.6. Mo2W clusters
6.11.2.2.1.7. Mo2Mn clusters
6.11.2.2.1.8. MoW2 clusters
6.11.2.2.1.9. MoMn2 clusters
6.11.2.2.1.10. W2Mn clusters
6.11.2.2.1.11. W2Re clusters
6.11.2.2.1.12. WMn2 clusters
6.11.2.2.2. Heterometallic tetranuclear clusters
6.11.2.2.2.1. CrMn3 clusters
6.11.2.2.2.2. Mo2Mn2 clusters
6.11.2.2.2.3. Mo2Re2 clusters
6.11.2.2.3. Clusters incorporating late transition metals or boron
6.11.2.2.3.1. Clusters incorporating boron
6.11.2.2.3.2. Heterometallacubanes derived from Cp3Mo3S4
6.11.2.2.3.3. Mo4Ir4 clusters
6.11.3. Clusters with MC bonds to CO and Cp-type ligands, as well as to other organic ligands
6.11.3.1. Homonuclear clusters of Group 5-7 metals
6.11.3.1.1. Homonuclear clusters of Group 5 metals
6.11.3.1.1.1. Trinuclear clusters of Nb
6.11.3.1.1.2. Trinuclear clusters of Ta
6.11.3.1.2. Homonuclear clusters of Group 6 metals
6.11.3.1.2.1. Trinuclear clusters of Mo
6.11.3.1.2.2. Trinuclear clusters of W
6.11.3.1.3. Homonuclear clusters of Group 7 metals
6.11.3.1.3.1. Exohedral fullerene complexes of trinuclear rhenium clusters
6.11.3.2. Heteronuclear clusters of Group 5-7 metals
6.11.3.2.1. CrMo2 clusters
6.11.3.2.2. Mo2W clusters
6.11.3.2.3. Mo2Mn clusters
6.11.3.2.4. Mo2Re clusters
6.11.3.2.5. Re3Au clusters
6.11.4. Organometallic clusters without MC bonds to CO or Cp-type ligands
6.11.4.1. Trinuclear clusters of Mo
6.11.4.2. Hexanuclear clusters of W
6.11.4.3. Tetranuclear clusters of rhenium
6.11.4.4. Octahedral clusters
6.11.4.4.1. Octahedral clusters of Mo
6.11.4.4.2. Octahedral clusters of Tc
6.11.4.4.3. Octahedral clusters of Re
6.11.4.4.4. Mixed-metal octahedral clusters
6.11.4.5. Carbide-centered clusters
6.11.4.5.1. Hexanuclear trigonal prismatic clusters of W
6.11.4.5.2. Dodecanuclear bioctahedral clusters of Re
6.11.5. Conclusion
References
Complexes of Groups 5-7 with N2, NO, and Other N-Containing Small Molecules
6.12.1. Introduction and chapter scope
6.12.1.1. Chapter scope
6.12.2. Group 5 V, Nb, Ta
6.12.2.1. Vanadium dinitrogen complexes
6.12.2.1.1. Nitrogen donor ligands
6.12.2.1.2. Alkoxide ligands
6.12.2.1.3. Cyclopentadienyl/alkyne ligands
6.12.2.1.4. Nitrogen and phosphorus pincer ligands
6.12.2.2. Vanadium ammonia and hydrazine complexes
6.12.2.3. Nitrous oxide
6.12.2.4. Niobium dinitrogen complexes
6.12.2.4.1. Nitrogen donor ligands
6.12.2.4.2. Pincer ligands
6.12.2.4.3. Oxygen donor ligands
6.12.2.5. Ta dinitrogen complexes
6.12.2.6. Dinitrogen complexes and hydrazine
6.12.3. Group 6 - Cr, Mo, and W
6.12.3.1. Chromium dinitrogen complexes
6.12.3.1.1. Phosphine ligands
6.12.3.1.2. Nitrogen donor ligands
6.12.3.1.3. Cyclopentadienyl ligands
6.12.3.2. Chromium-NO complexes
6.12.3.2.1. Pincer ligands
6.12.3.2.2. Nitrogen-donor ligands
6.12.3.2.3. Cp donor-ligands
6.12.3.2.4. Cyano-bridged structures based on [CrI(CN)5(NO)]3- and CrNO complexes containing other donor-ligands
6.12.3.3. Molybdenum and tungsten dinitrogen complexes
6.12.3.3.1. Diphosphine ligands
6.12.3.3.2. Polyphosphine ligands
6.12.3.3.3. Isocyanide and carbene ligands (Mo)
6.12.3.3.4. Nitrogen donor ligands
6.12.3.3.5. P and N pincer ligands
6.12.3.4. Molybdenum nitrosyl complexes
6.12.3.4.1. Phosphine ligands
6.12.3.4.2. Nitrogen donor ligands
6.12.3.4.3. Oxygen donor ligands
6.12.3.4.4. Multimetallic complexes
6.12.3.4.5. Molybdenum amine, imide complexes
6.12.3.5. Tungsten nitrosyl complexes
6.12.3.5.1. Alkyl, alkenyl, isonitrile ligands
6.12.3.5.2. Nitrogen donor ligands
6.12.3.5.3. Bimetallic complexes
6.12.3.5.4. Phosphine ligands
6.12.3.5.5. Tungsten imido complexes
6.12.4. Group 7 - Mn, Tc, and Re
6.12.4.1. Manganese dinitrogen complexes
6.12.4.2. Manganese nitrosyl complexes
6.12.4.2.1. Nitrogen donor ligands
6.12.4.2.2. B, C, P and S donor ligands
6.12.4.3. Technetium dinitrogen complexes
6.12.4.4. Technetium nitrosyl complexes
6.12.4.5. Rhenium dinitrogen complexes
6.12.4.6. Rhenium nitrosyl complexes
6.12.4.6.1. Nitrogen and carbon donor ligands
6.12.4.6.2. Phosphine donors
6.12.4.7. Rhenium nitrato/nitrito complexes
6.12.5. Conclusions and outlook
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of Volume 7
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 7
Preface
Introduction to Groups 8 to 10
Ferrocenes and Other Sandwich Complexes of Iron
Abbreviations
7.02.1. Introduction
7.02.2. Synthesis and reactions of ferrocene derivatives
7.02.2.1. Metalated ferrocenes and haloferrocenes
7.02.2.2. Alkyl, acyl, aryl, alkenyls, alkynyls and related ferrocenes
7.02.2.3. Ferrocenylsilanes
7.02.2.4. Nitrogen containing ferrocene derivatives
7.02.2.5. Phosphorus containing ferrocene derivatives
7.02.2.6. Ferrocenophanes
7.02.2.7. Chiral ferrocenes
7.02.3. Macromolecules: Polymers and dendrimers
7.02.4. Bioorganometallic chemistry of ferrocene derivatives
7.02.5. Other applications
References
Monocyclopentadienyl and Other Half-Sandwich Complexes of Iron
Nomenclature
7.03.1. Introduction and historical perspectives
7.03.2. Monocyclopentadienyl compounds bearing classic π-acceptor ligands L
7.03.2.1. Carbonyl complexes (L=CO)
7.03.2.2. Isonitrile complexes (L=RNC)
7.03.2.3. Dinitrogen complexes (L=N2)
7.03.3. Monocyclopentadienyl compounds bearing halide and pseudohalide ligands
7.03.3.1. Halides
7.03.3.2. Pseudohalides
7.03.4. Monocyclopentadienyl compounds bearing group 15 donor ligands
7.03.4.1. Monocyclopentadienyl compounds bearing N ligands
7.03.4.1.1. Amines
7.03.4.1.2. Amides
7.03.4.1.3. Imido and Imidazolin-2-iminato
7.03.4.1.4. Nitrido
7.03.4.2. Monocyclopentadienyl compounds bearing P ligands
7.03.4.2.1. Phosphines
7.03.4.2.2. Phosphides, iminophosphoranes
7.03.4.2.3. Phosphinidenes
7.03.4.2.4. P ligands derived from P4 activation
7.03.4.2.5. Pentaphosphaferrocene and its reaction chemistry
7.03.4.3. Monocyclopentadienyl compounds bearing As ligands
7.03.4.3.1. As ligands derived from As4 activation
7.03.4.3.2. Pentaarsaferrocene and its reaction chemistry
7.03.4.4. Monocyclopentadienyl compounds bearing Sb ligands
7.03.4.5. Monocyclopentadienyl compounds bearing Bi ligands
7.03.5. Monocyclopentadienyl compounds bearing group 16 donor ligands
7.03.5.1. Monocyclopentadienyl compounds bearing O-ligands
7.03.5.1.1. Hydroxido/alkoxido/phenoxido
7.03.5.1.2. Oxido
7.03.5.2. Monocyclopentadienyl compounds bearing S-ligands
7.03.5.3. Monocyclopentadienyl compounds bearing Se/Te-ligands
7.03.6. Monocyclopentadienyl compounds bearing group 14 donor ligands
7.03.6.1. Monocyclopentadienyl compounds bearing C-ligands
7.03.6.1.1. FeC single bonds
7.03.6.1.1.1. Alkyl
7.03.6.1.1.2. Aryl
7.03.6.1.1.3. Alkynyl
7.03.6.1.2. N-heterocyclic carbene (NHC) adducts
7.03.6.1.3. FeC double bonds (Alkylidene)
7.03.6.1.3.1. Vinylidenes
7.03.6.1.3.1.1. Synthesis from Fe acetylides
7.03.6.1.3.1.2. Synthesis from [CpFe(η6-toluene)]PF6
7.03.6.1.3.1.3. Synthesis from [CpFe(dppe)I]
7.03.6.1.3.2. Vinyl and vinyliminium complexes
7.03.6.1.3.2.1. Syntheses and reactions of vinyliminium complexes derived from an amino-carbyne-bridged FeFe complexes
7.03.6.1.3.2.2. Azine-bis(alkylidene) complexes
7.03.6.1.3.2.3. Vinyliminium complexes derived from isocyanide complexes
7.03.6.1.3.2.4. Acetylide-induced reactivity
7.03.6.1.3.2.5. [3+2] Cycloaddition at the vinyliminium ligand
7.03.6.1.4. FeC triple bonds (Alkylidyne, Carbyne)
7.03.6.1.5. π-complexes with C-based ligands
7.03.6.1.5.1. η2-Alkene
7.03.6.1.5.2. η3-Allyl
7.03.6.1.5.3. η5-Pentadienyl
7.03.6.1.5.4. η6-Arene
7.03.6.1.5.4.1. Synthesis of cationic π arene complexes
7.03.6.1.5.4.1.1 Oxygen-substituted complexes
7.03.6.1.5.4.1.2 Nitrogen-substituted complexes
7.03.6.1.5.4.1.3 Catalytic applications of π arene complexes
7.03.6.1.5.4.1.4 Functionalization towards dendrimers
7.03.6.1.5.4.2. Anionic arene and cyclohexadienyl ligands
7.03.6.1.5.4.3. Synthesis of π phosphinine complexes
7.03.6.2. Monocyclopentadienyl compounds bearing the heavier homologues (ESi, Ge, Sn, Pb)
7.03.7. Monocyclopentadienyl compounds bearing group 13 donor ligands
7.03.7.1. Monocyclopentadienyl compounds bearing boron-based ligands
7.03.7.2. Monocyclopentadienyl compounds bearing Al-, Ga-, In-based ligands
7.03.8. Monocyclopentadienyl iron hydride compounds
7.03.9. Heterobimetallic complexes featuring iron-metal bonds
7.03.10. Conclusion
References
Recent Advances in Synthesis, Characterization and Reactivities of Iron-Alkyl and Iron-Aryl Complexes
7.04.1. Introduction
7.04.2. Iron-alkyl complexes
7.04.2.1. Homoleptic iron-alkyl complexes
7.04.2.2. NHC-supported iron-alkyl complexes
7.04.2.3. Phosphine-supported iron-alkyl complexes
7.04.2.4. Nitrogen-donor-ligand-supported iron-alkyl complexes
7.04.2.5. Iron-alkyl complexes supported by other ligands
7.04.2.5.1. Pincer ligand-supported iron-alkyl complexes
7.04.2.5.2. Cp and Cp ligand-supported iron-alkyl complexes
7.04.2.5.3. Clusters and sulfur donor ligand-supported iron-alkyl complexes
7.04.3. Iron-aryl complexes
7.04.3.1. Homoleptic iron-aryl complexes
7.04.3.2. NHC-supported iron-aryl complexes
7.04.3.3. Phosphine-supported iron-aryl complexes
7.04.3.4. Nitrogen-donor-ligand-supported iron-aryl complexes
7.04.3.4.1. TMEDA-supported iron-aryl complexes
7.04.3.4.2. β-Diketiminate-supported iron-aryl complexes
7.04.3.4.3. PDI-supported iron-aryl complexes
7.04.3.4.4. Bipyridine-supported iron-aryl complexes
7.04.3.4.5. Pincer ligand-supported Iron-aryl complexes
7.04.3.5. Cp and Cp ligand-supported iron-aryl complexes
7.04.4. Conclusion
References
Alkylidyne and Alkylidene Complexes of Iron
Abbreviations
7.05.1. Introduction
7.05.1.1. General considerations on alkylidyne and alkylidene ligands
7.05.1.2. Iron complexes
7.05.2. Monoiron alkylidyne complexes
7.05.3. Alkylidyne and related alkylidene ligands in diiron complexes
7.05.3.1. Classical alkylidyne complexes
7.05.3.1.1. Bis-cyclopentadienyl systems
7.05.3.1.2. Other systems
7.05.3.2. Amino-alkylidyne (bis-cyclopentadienyl) complexes
7.05.3.2.1. CN and CC bond forming reactions via activation of small molecules
7.05.3.2.2. Synthesis and derivatization of bridging vinyliminium ligands
7.05.3.2.3. Non-cyclopentadienyl systems
7.05.3.3. Thio-alkylidyne complexes
7.05.3.4. Alkoxy-alkylidyne complexes
7.05.3.5. Comparative analysis of structural and spectroscopic features of diiron alkylidyne complexes
7.05.4. Advances in polyiron alkylidyne complexes (since 2000)
7.05.5. Phosphino-alkylidene ligands in diiron complexes
7.05.6. Advances in monoiron alkylidene complexes (since 2000)
7.05.6.1. Classical alkylidene complexes
7.05.6.2. Alkoxy-alkylidene and thio-alkylidene complexes
7.05.6.3. Amino-alkylidene complexes
7.05.6.4. Overview of NHC complexes
7.05.7. Concluding remarks
References
Small Molecule Activation by Organo-iron Complexes
7.06.1. N2 activation and reduction
7.06.1.1. N2 activation and key intermediates
7.06.1.1.1. Formation of N2 complexes
7.06.1.1.1.1. Under reducing conditions
7.06.1.1.1.2. From hydride species
7.06.1.1.2. N2-derived adducts
7.06.1.1.2.1. Diazenido adduct
7.06.1.1.2.2. Hydrazido adduct
7.06.1.1.2.3. Nitrido adduct
7.06.1.1.2.4. Diazene adduct
7.06.1.1.2.5. Hydrazine adduct
7.06.1.1.2.6. NH2 and NH3 adducts
7.06.1.2. N2 reduction under catalytic conditions
7.06.2. H2 production
7.06.2.1. FeFe catalysts
7.06.2.1.1. With only CO ligands
7.06.2.1.2. With phosphine ligands
7.06.2.1.3. With N-based ligands and metallocene unit
7.06.2.2. NiFe catalysts
7.06.2.2.1. Stabilization of reduced NiIFeII species
7.06.2.2.2. Stabilization of NiFe hydride species
7.06.3. H2 oxidation
7.06.3.1. Dinuclear FeFe complexes
7.06.3.2. Mononuclear [CpFe((RN1-2)PR12)] complexes
7.06.3.2.1. Characterization of the initial FeII complexes
7.06.3.2.2. Characterization of the H2 adducts
7.06.3.2.3. Characterization of the [FeH(NH)+] intermediates
7.06.3.3. Stoichiometric H2 oxidation
7.06.3.4. Catalytic H2 oxidation
7.06.4. O2 activation
7.06.4.1. Synthesis and characterization of the organo iron complexes
7.06.4.1.1. Synthesis of the NHC-based ligands
7.06.4.1.2. Structure of the mononuclear ferrous NHC-based complexes
7.06.4.1.3. Spectroscopic and redox properties of the mononuclear ferrous NHC-based complexes
7.06.4.1.4. Structure of diiron complexes with NHC-based ligands
7.06.4.1.5. Structure of the mononuclear ferric complexes with NHC-based ligands
7.06.4.2. Intermediates generated from O2 activation
7.06.4.2.1. Characterization of a superoxo complex
7.06.4.2.2. Characterization of a peroxo complex
7.06.4.2.3. Characterization of mononuclear high valent iron oxo species
7.06.4.2.4. Characterization of the diferric oxo species as final oxidation products
7.06.4.3. Oxidation properties
7.06.4.3.1. Under stoichiometric conditions
7.06.4.3.2. Under catalytic conditions
7.06.5. Conclusions
References
Mono- and Bis-cyclopentadienyl Complexes of Ruthenium and Osmium
7.07.1. Introduction
7.07.2. Pogo stick type (one-legged piano stool) complexes
7.07.3. Two-legged piano stool complexes
7.07.3.1. Two-legged piano stool complexes with non-chelate ligands
7.07.3.2. Two-legged piano stool complexes with a chelate ligand
7.07.4. Three-legged piano stool complexes
7.07.4.1. Three-legged piano stool complexes supported by a substituted cyclopentadienyl groups
7.07.4.1.1. Preparations of substituted cyclopentadienyl groups from unsaturated hydrocarbons
7.07.4.1.2. Half-sandwich complexes supported by a cyclopentadienyl group containing a chiral unit
7.07.4.1.3. Half-sandwich complexes supported by a cyclopentadienyl group containing a tethered donor group
7.07.4.1.3.1. Chiral systems
7.07.4.1.3.2. Non-chiral systems
7.07.4.1.4. Miscellaneous
7.07.4.2. Bifunctional complexes (three-legged piano stool complexes supported by a non-innocent ligand)
7.07.4.3. Dihydrogen and hydrido complexes
7.07.4.4. Half-sandwich complexes with a Group 13 element
7.07.4.5. Half-sandwich complexes with a Group 14 element
7.07.4.5.1. Alkoxycarbonyl complexes
7.07.4.5.2. NHC complexes
7.07.4.5.3. Carbene complexes
7.07.4.5.4. Vinylidene and allenylidene complexes
7.07.4.5.5. Alkynyl and poly-ynyl complexes
7.07.4.5.6. π-Allyl complexes of Ru(II)
7.07.4.5.7. Si, Ge, Sn, and Pb complexes
7.07.4.6. Half-sandwich complexes with a Group 15 element
7.07.4.6.1. Dinitrogen complexes
7.07.4.6.2. Azido- and organicazido complexes
7.07.4.6.3. Diazoalkane and diazene complexes
7.07.4.6.4. N,N-Chelate ligands
7.07.4.6.5. P4 and As4 complexes
7.07.4.6.6. Reactions at the phosphorus atom
7.07.4.6.7. Half-sandwich complexes containing water soluble phosphine ligands
7.07.4.7. Half-sandwich complexes with a Group 16 element
7.07.4.7.1. Dioxygen complexes
7.07.4.7.2. Thiocarbonato and thiocarbamato complexes
7.07.4.7.3. Half-sandwich Ru complexes bearing dithiolene and other sulfur containing chelates
7.07.4.8. Anticancer activities of half-sandwich Ru complexes with a cyclopentadienyl ligand
7.07.5. Four-legged piano stool complexes and penta- and hexahydrido complexes of osmium
7.07.5.1. Polyhydrido complexes
7.07.5.2. Hydrido complexes containing Si, Ge, Sn, and Pb
7.07.5.3. π-Allyl complexes of Ru(IV) and Os(IV)
7.07.5.4. Miscellaneous
7.07.6. Metallocenes and arene complexes of ruthenium and osmium
7.07.6.1. Ruthenocenes and osmocenes
7.07.6.1.1. Applications to functional materials
7.07.6.1.2. Metalloligands
7.07.6.1.3. Chiral metallocenes
7.07.6.1.4. Ruthenocenophanes and osmocenophanes
7.07.6.1.5. Heavy ruthenocenes
7.07.6.2. η6-Arene complexes
7.07.6.2.1. Preparations of cationic arene complexes
7.07.6.2.2. Catalytic SNAr reactions
7.07.6.2.3. Metalloligands
7.07.6.3. Anticancer activities of ruthenocenes and arene complexes
7.07.7. Concluding remarks
References
Ruthenium and Osmium Complexes Containing NHC and π-Acid Ligands
Nomenclature
7.08.1. General introduction
7.08.2. Complexes containing NHC ligands
7.08.2.1. Olefin metathesis catalysts
7.08.2.1.1. Complexes applied in metathesis
7.08.2.1.2. Mechanistic studies
7.08.2.2. Hydrogenation reactions
7.08.2.2.1. Transfer hydrogenation catalysts
7.08.2.2.2. Direct hydrogenation catalysts
7.08.2.3. Abnormally coordinated NHC complexes
7.08.2.4. Other recent NHC complexes
7.08.3. Heavier tetrylenes
7.08.3.1. Mononuclear complexes
7.08.3.1.1. Research of Javier A. Cabeza et al.
7.08.3.1.2. Research of Hisako Hashimoto et al.
7.08.3.1.3. Research of T. Don Tilley et al.
7.08.3.1.4. Further work on ruthenium and osmium heavier tetrylene complexes
7.08.3.1.4.1. Theoretical work
7.08.3.1.4.2. Experimental research
7.08.3.2. Multinuclear Ru-, Os-species
7.08.3.2.1. Multinuclear ruthenium species of Cabeza et al.
7.08.3.2.2. Further work on multinuclear Ru-, Os-species
7.08.4. Nitrogen coordinating ligands
7.08.4.1. Introduction into RuNO complexes for medicinal applications
7.08.4.2. Recent work on RuNO complexes
7.08.5. Phosphorous coordinating ligands
7.08.5.1. Complexes with monodentate phosphorous ligands
7.08.5.2. Complexes with bidentate phosphorous ligands
7.08.5.3. Complexes with tridentate phosphorous ligands
Acknowledgment
References
Relevant Websites
Ruthenium benzylidene and benzylidyne complexes: Alkene metathesis catalysis
7.09.1. Introduction
7.09.2. The early days: Ruthenium propenylidene complexes
7.09.3. The challengers: Variations involving the ruthenium alkylidene moiety
7.09.4. The breakthrough: Ruthenium benzylidene complexes
7.09.4.1. Complexes with two phosphine ligands
7.09.4.2. Complexes with two NHC ligands
7.09.4.3. Complexes with mixed NHC/phosphine ligands
7.09.4.3.1. Variations involving the nitrogen substituents of the NHC
7.09.4.3.2. Variations involving the backbone substituents of the NHC
7.09.4.3.3. Variations involving the ring size of the NHC
7.09.4.3.4. Variations involving the heterocyclic core of the NHC
7.09.4.4. Complexes with mixed NHC/pyridine ligands
7.09.4.4.1. Complexes with two pyridine ligands
7.09.4.4.2. Complexes with one pyridine ligand
7.09.4.5. Complexes with mixed NHC/NHCEWG ligands
7.09.4.6. Complexes with mixed NHC/phosphite ligands
7.09.4.7. Complexes with mixed NHC/Schiff base ligands
7.09.5. The state of the art: Chelated ruthenium benzylidene complexes
7.09.5.1. Oxygen chelates
7.09.5.1.1. Variations involving the benzylidene ring substituents
7.09.5.1.2. Variations involving the oxygen substituents
7.09.5.1.3. Variations involving the NHC ligand
7.09.5.1.4. Anionic ligand exchange
7.09.5.2. Sulfur chelates
7.09.5.2.1. Variations involving the sulfur atom
7.09.5.2.2. Anionic ligand exchange
7.09.5.3. Selenium chelates
7.09.5.4. Nitrogen chelates
7.09.5.5. Phosphorus chelates
7.09.6. The outsiders: Ruthenium benzylidyne complexes
7.09.7. Conclusion and outlook
References
Ruthenium and Osmium Carbonyl Cluster Complexes
7.10.1. Introduction
7.10.2. Ruthenium carbonyl cluster complexes
7.10.2.1. Monometallic ruthenium carbonyl cluster complexes
7.10.2.2. Bimetallic ruthenium-group 10 transition metal carbonyl cluster complexes
7.10.2.2.1. Bimetallic ruthenium-nickel carbonyl cluster complexes
7.10.2.2.2. Bimetallic ruthenium-palladium carbonyl cluster complexes
7.10.2.2.3. Bimetallic ruthenium-platinum carbonyl cluster complexes
7.10.2.3. Bimetallic ruthenium-group 14 metal carbonyl cluster complexes
7.10.2.3.1. Bimetallic ruthenium-tin carbonyl cluster complexes
7.10.2.3.2. Bimetallic ruthenium-germanium carbonyl cluster complexes
7.10.2.4. Trimetallic ruthenium-platinum-palladium carbonyl cluster complexes
7.10.2.5. Trimetallic ruthenium-platinum-tin carbonyl cluster complexes
7.10.2.6. Trimetallic ruthenium-platinum-germanium carbonyl cluster complexes
7.10.3. Osmium carbonyl cluster complexes
7.10.3.1. Monometallic osmium carbonyl cluster complexes
7.10.3.2. Bimetallic osmium-group 10 transition metal carbonyl cluster complexes
7.10.3.2.1. Bimetallic osmium-palladium carbonyl cluster complexes
7.10.3.2.2. Bimetallic osmium-platinum carbonyl cluster complexes
7.10.3.3. Bimetallic osmium-group 14 metal carbonyl cluster complexes
7.10.3.3.1. Bimetallic osmium-tin carbonyl cluster complexes
7.10.3.3.2. Bimetallic osmium-germanium carbonyl cluster complexes
7.10.3.4. Trimetallic osmium-platinum-tin carbonyl cluster complexes
7.10.4. Conclusions
Acknowledgment
References
N-Heterocyclic Carbene Complexes of Cobalt
Abbreviations
7.11.1. General introduction
7.11.2. NHC cobalt complexes
7.11.2.1. Mononuclear Co0 complexes
7.11.2.1.1. Monodentate carbene ligands
7.11.2.1.1.1. Homoleptic complexes of type [Co(NHC)2]
7.11.2.1.1.2. Heteroleptic complexes
7.11.2.1.1.2.1. Complexes of type [Co(NHC)L2]
7.11.2.1.1.2.2. Complexes of type [Co(NHC)L3]
7.11.2.1.1.2.3. Complexes of type [Co(NHC)2L]
7.11.2.1.1.2.4. Complexes of type [Co(NHC)3L]
7.11.2.2. Mononuclear Co-I complexes
7.11.2.2.1. Monodentate carbene ligands
7.11.2.2.1.1. Complexes of type [CoX(NHC)L2(NO)]
7.11.2.2.1.2. Complexes of type [CoX(NHC)2L(NO)
7.11.2.2.1.3. Complexes of type (Cation+)[Co(NHC)2L2]-
7.11.2.3. Mononuclear CoII complexes
7.11.2.3.1. Monodentate carbene ligands
7.11.2.3.1.1. Homoleptic complexes of type [Co(NHC)4]2+(A-)2
7.11.2.3.1.2. Heteroleptic complexes
7.11.2.3.1.2.1. Complexes of type [CoX2(NHC)] and related
7.11.2.3.1.2.2. Complexes of type [CoX2(NHC)L]
7.11.2.3.1.2.3. Complexes of type [CoX2(NHC)L2]
7.11.2.3.1.2.4. Complexes of type (Cation+)[CoX3(NHC)]-
7.11.2.3.1.2.5. Complexes of type [CoX2(NHC)2]
7.11.2.3.2. Bidentate bis-carbene ligands
7.11.2.3.3. Tridentate tris-carbene ligands
7.11.2.3.4. Tetradentate tetra-carbene ligands
7.11.2.3.5. Functionalized NHC complexes
7.11.2.3.5.1. Bidentate ligands
7.11.2.3.5.1.1. Alkyl functionalized (cyclometallated) NHC ligands
7.11.2.3.5.1.2. Silyl-functionalized NHC ligands
7.11.2.3.5.1.3. Nitrogen-donor functionalized ligands
7.11.2.3.5.2. Tridentate ligands
7.11.2.3.5.2.1. Symmetrical CNHCNCNHC pincers
7.11.2.3.5.2.2. Symmetrical CNHCCCNHC pincers
7.11.2.3.5.2.3. Symmetrical OCNHCO pincers
7.11.2.3.5.2.4. Non-symmetrical PNCNHC pincers
7.11.2.3.5.3. Ligands with higher denticity
7.11.2.3.5.3.1. Tripodal ligands-Phenolate/bis(NHC)amine
7.11.2.3.5.3.2. Pentadentate ligands
7.11.2.4. Mononuclear CoI complexes
7.11.2.4.1. Monodentate carbene ligands
7.11.2.4.1.1. Homoleptic complexes
7.11.2.4.1.1.1. Complexes of type [Co(NHC)2]+(A-)
7.11.2.4.1.1.2. Complexes of type [Co(NHC)3]+(A-)
7.11.2.4.1.1.3. Complexes of type [Co(NHC)4]+(A-)
7.11.2.4.1.2. Heteroleptic complexes
7.11.2.4.1.2.1. Complexes of type [CoX(NHC)]
7.11.2.4.1.2.2. Complexes of type [CoX(NHC)L]
7.11.2.4.1.2.3. Complexes of type [CoX(NHC)L2]
7.11.2.4.1.2.4. Complexes of type [CoX(NHC)L3]
7.11.2.4.1.2.5. Complexes of type [Co(NHC)2L3]+(A-)
7.11.2.4.1.2.6. Complexes of type [CoX(NHC)2]
7.11.2.4.1.2.7. Complexes of type [CoX(NHC)3]
7.11.2.4.2. Functionalized NHCs
7.11.2.4.2.1. Bidentate ligands: Alkyl functionalized (cyclometallated)
7.11.2.4.2.2. Tridentate ligands
7.11.2.4.2.2.1. Symmetrical CNHCNCNHC pincers
7.11.2.4.2.2.2. Symmetrical CNHCCCNHC pincers
7.11.2.4.2.2.3. Non-symmetrical PNCNHC pincers
7.11.2.4.2.3. Ligands with higher denticity: Tripodal ligands-Tris(NHC)amine
7.11.2.5. Mononuclear CoIII complexes
7.11.2.5.1. Monodentate carbene ligands
7.11.2.5.1.1. Heteroleptic complexes of type [CoX3(NHC)L3]
7.11.2.5.1.2. Heteroleptic complexes of type [CoX2(NHC)L3]+(A-)
7.11.2.5.2. Tris-carbenes complexes
7.11.2.5.3. Functionalized NHCs
7.11.2.5.3.1. Bidentate ligands
7.11.2.5.3.1.1. Nitrogen-donor functionalized
7.11.2.5.3.1.2. Sulfur-donor functionalized
7.11.2.5.3.2. Tridentate ligands
7.11.2.5.3.2.1. Symmetrical CNHCCCNHC pincers
7.11.2.5.3.2.2. Symmetrical CNHCSiCNHC pincers
7.11.2.5.3.2.3. Symmetrical NCNHCN pincers
7.11.2.5.3.2.4. Non-symmetrical NCNHCN pincers
7.11.2.5.3.2.5. Non-symmetrical NNCNHC pincer
7.11.2.5.3.2.6. Non-symmetrical CNHCNC ligands
7.11.2.5.3.2.7. Non-symmetrical ONCNHC ligand
7.11.2.5.3.3. Ligands with higher denticity: Tetradentate ligands
7.11.2.6. Mononuclear CoIV and CoV complexes
7.11.2.6.1. Monodentate carbene ligands
7.11.2.6.1.1. Heteroleptic complexes of type [CoX4(NHC)]
7.11.2.6.1.2. Heteroleptic complexes of type [CoX4(NHC)]+(A-)
7.11.2.6.2. Functionalized carbene ligands
7.11.2.7. Polynuclear homometallic complexes
7.11.2.7.1. Binuclear complexes
7.11.2.7.1.1. Monodentate carbene ligands
7.11.2.7.1.1.1. Halide complexes and reactivity
7.11.2.7.1.1.2. Carbonyl complexes
7.11.2.7.1.1.3. Silyl complexes
7.11.2.7.1.2. Bridging bis-carbene and pincer ligands
7.11.2.7.2. Tetranuclear complexes
7.11.2.8. Polynuclear heterometallic complexes
7.11.3. General conclusion
Acknowledgment
References
Organocobalt Complexes in C-H Bond Activation
7.12.1. Introduction
7.12.2. C-H activation promoted by low-valent cobalt complexes
7.12.2.1. Chelation-assisted C-H functionalization
7.12.2.1.1. Reaction with alkynes and alkenes
7.12.2.1.2. Reaction with electrophiles
7.12.2.1.3. Reaction with organometallic reagents
7.12.2.2. Non-chelation-assisted C-H functionalization
7.12.2.2.1. Reaction with alkynes and alkenes
7.12.2.2.2. Reaction with electrophiles
7.12.2.2.3. C-H borylation
7.12.3. C-H activation promoted by high-valent cobalt complexes
7.12.3.1. C-H activation promoted by Cp*Co(III)-type complexes
7.12.3.1.1. Addition to polar CX bonds and Michael acceptors
7.12.3.1.2. Reaction with alkynes, alkenes, and allenes
7.12.3.1.3. Reaction with nitrene or carbene precursors
7.12.3.1.4. Reaction with E-X-type electrophiles
7.12.3.1.5. Miscellaneous transformations
7.12.3.1.6. Enantioselective C-H functionalization
7.12.3.2. C-H activation assisted by bidentate directing group
7.12.3.2.1. Reaction with alkynes, alkenes, and allenes
7.12.3.2.2. Dehydrogenative C-H functionalization
7.12.3.2.3. C-H carbonylation and related transformations
7.12.3.2.4. Miscellaneous transformations
7.12.3.3. Miscellaneous reactions
7.12.4. Conclusion
Acknowledgment
References
Organometallic Pincer Complexes of Cobalt, Rhodium, and Iridium
7.13.1. Introduction
7.13.2. Cobalt pincer complexes
7.13.2.1. Cross-coupling reactions
7.13.2.2. Hydroboration
7.13.2.3. Silylation/hydrosilylation and hydrophosphination
7.13.2.4. Hydrogenation and dehydrogenation
7.13.3. Rhodium pincer complexes
7.13.4. Iridium pincer complexes
7.13.4.1. Alkane dehydrogenation
7.13.4.2. Olefin isomerization
7.13.4.3. Tandem reactions involving alkane dehydrogenation
7.13.4.4. Dehydrogenation of substrates with heteroatoms
7.13.4.5. Dehydrogenative coupling
7.13.4.6. Dehydrogenation of carboxylic acids
7.13.4.7. Dehydrogenation of alcohols
7.13.4.8. Hydrogenation of CO2
7.13.4.9. Hydrogenation of alkenes
7.13.4.10. Hydrogenation of benzoquinones and nitroarenes
7.13.4.11. Hydroboration and carbonylation
7.13.4.12. Miscellaneous reactions
7.13.5. Conclusions
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of Volume 8
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 8
Preface
N-Heterocyclic Carbene (NHC) Complexes of Rhodium and Iridium
8.01.1. Introduction
8.01.2. Rh and Ir complexes with monodentate NHCs
8.01.2.1. Syntheses of Rh and Ir complexes with monodentate NHCs
8.01.2.1.1. Syntheses of Rh and Ir complexes with monodentate NHCs from [M(COD)X]2
8.01.2.1.2. Syntheses of Rh and Ir complexes with monodentate NHCs from [M(alkene)2X]2
8.01.2.1.3. Syntheses of Rh complexes with monodentate NHCs from Rh2(O2CR)4
8.01.2.1.4. Syntheses of Rh and Ir complexes with monodentate NHCs from [Cp*MCl2]2
8.01.2.1.5. Syntheses of chiral Rh and Ir complexes with monodentate NHCs
8.01.2.2. Reactivities of Rh and Ir complexes with monodentate NHCs
8.01.2.2.1. Syntheses of Rh(NHC)- and Ir(NHC)-carbonyl complexes
8.01.2.2.2. Rh(NHC)- and Ir(NHC)-N2 complexes
8.01.2.2.3. Reactions of Rh(NHC) and Ir(NHC) complexes with O2
8.01.2.2.4. Reactions of Rh(NHC) and Ir(NHC) complexes with H2
8.01.2.2.5. Reactions of Rh(NHC) and Ir(NHC) complexes with X-H bonds (X = C, O, B)
8.01.2.2.6. Syntheses and reactivities of Rh(NHC) Fisher carbenes
8.01.2.2.7. Syntheses and reactivities of Rh(NHC)(COD)X and Ir(NHC)(COD)X (X=OH, F)
8.01.2.2.8. Redox reactions of Rh(NHC) and Ir(NHC) complexes
8.01.3. Rh and Ir complexes with chelating bis-NHC ligands
8.01.3.1. Bis-NHC ligands with alkyl linkers
8.01.3.1.1. Bis(imidazolidene) ligands with alkyl linkers
8.01.3.1.2. Bis(abnormal carbene) ligands with alkyl linkers
8.01.3.1.3. Bis(triazolidene) ligands with alkyl linkers
8.01.3.1.4. Other bis-NHC ligands with alky linkers
8.01.3.2. Annulated bis-NHC ligands
8.01.3.3. Bis-NHC ligands with rigid linkers
8.01.3.4. Bis-NHC ligands with chiral linkers
8.01.3.5. Pincer bis-NHC ligands
8.01.3.6. Scorpionate-bis-NHC ligands
8.01.4. Rh(NHC) and Ir(NHC) complexes with connected external coordinating groups
8.01.4.1. Rh(NHC) and Ir(NHC) complexes with connected external phosphine groups
8.01.4.1.1. Rh(NHC) and Ir(NHC) complexes with connected external triarylphosphine groups
8.01.4.1.2. Rh(NHC) and Ir(NHC) complexes with connected external trialkylphosphine groups
8.01.4.1.3. Rh(NHC) and Ir(NHC) complexes with connected external mixed phosphine groups
8.01.4.2. Rh(NHC) and Ir(NHC) complexes with connected external Cp groups
8.01.4.3. Rh(NHC) and Ir(NHC) complexes with connected external heterocycles
8.01.4.3.1. Rh(NHC) and Ir(NHC) complexes with connected external pyridine groups
8.01.4.3.2. Rh(NHC) and Ir(NHC) complexes with connected external oxazoline groups
8.01.4.3.3. Rh(NHC) and Ir(NHC) complexes with connected external imidazole, pyrimidine, and pyrazole groups
8.01.4.3.4. Rh(NHC) and Ir(NHC) complexes with connected external triazole and quinoline groups
8.01.4.4. Amines, alcohols, thiols, and their derivatives
8.01.4.4.1. Rh(NHC) and Ir(NHC) complexes with connected external amine groups
8.01.4.4.2. Rh(NHC) and Ir(NHC) complexes with connected external alcohol, ether, and carboxylate groups
8.01.4.4.3. Rh(NHC) and Ir(NHC) complexes with connected external sulfur functional groups
8.01.4.5. Olefins and other teathers
8.01.5. Conclusion
Acknowledgment
References
Half-Sandwich Rhodium and Iridium Complexes
8.02.1. Introduction
8.02.2. Half-sandwich Rh/Ir complexes with bidentate ligand of N and/or O atoms
8.02.2.1. NN-bidentate ligands
8.02.2.2. NO-bidentate ligands
8.02.3. Half-sandwich Rh/Ir complexes with phosphorus ligands
8.02.3.1. Phosphite ligands
8.02.3.2. Ligands bearing P and PP coordination sites
8.02.3.3. PN bidentate ligands
8.02.3.4. Ligands bearing P and C coordination sites
8.02.3.5. Ligands bearing P, H/P, O and other coordination sites
8.02.4. Half-sandwich Rh/Ir complexes with sulfur ligands
8.02.4.1. SS-bidentate ligands
8.02.4.2. S, N-coordination sites ligands
8.02.4.3. S,C/S,B-coordination sites ligands
8.02.4.4. S, P-coordinates sites ligands
8.02.5. Half-sandwich rhodium-carbon or iridium-carbon bonded complexes
8.02.5.1. Monodentate ligands with C atom as coordination site
8.02.5.2. Bidentate ligands
8.02.5.2.1. CN five-membered metallacycles
8.02.5.2.2. CN six-membered metallacycles
8.02.5.2.3. CN seven-membered metallacycles
8.02.5.2.4. CC five-membered metallacycles
8.02.5.2.5. CC six- or seven- membered metallacycles
8.02.5.3. Multidentate ligands
8.02.6. Half-sandwich Rh/Ir complexes bearing hydrogen, borane and metal groups
8.02.6.1. Half-sandwich Rh/Ir hydride complexes
8.02.6.2. Rhodium-metal or iridium-metal bonded complexes
8.02.6.3. Metallaborane complexes based on half-sandwich rhodium and iridium
8.02.7. Half-sandwich Rh/Ir fragments in supramolecular chemistry
8.02.7.1. Supramolecular macrocycles
8.02.7.2. Supramolecular cages
8.02.7.3. Molecular knots
8.02.7.4. Molecular links
8.02.8. Conclusion
Acknowledgment
References
Group 9 Boryl Complexes
8.03.1. Introduction
8.03.2. Ir-Boryl complexes
8.03.3. Rh-Boryl complexes
8.03.4. Co-Boryl complexes
8.03.5. Summary
References
Group 9 and 10 Carbonyl Clusters
Nomenclature
8.04.1. Introduction
8.04.2. Cobalt
8.04.2.1. Homometallic cobalt carbonyl clusters: DFT studies on unsaturated Co4(CO)n species
8.04.2.2. Homometallic cobalt clusters containing main-group elements
8.04.2.3. Heteroleptic cobalt carbonyl clusters
8.04.2.4. Heterometallic cobalt carbonyl clusters containing main-group elements
8.04.2.5. Cobalt carbonyl clusters as precursors in the synthesis of metal nanoparticles
8.04.2.6. Cobalt carbonyl clusters in catalysis
8.04.3. Rhodium
8.04.3.1. Homometallic rhodium carbonyl clusters
8.04.3.2. Heteroleptic rhodium carbonyl clusters
8.04.3.3. Heterometallic rhodium carbonyl clusters
8.04.3.4. Homometallic rhodium carbonyl clusters containing post-transition metals
8.04.3.5. Carbonyl fluxionality studies in rhodium clusters
8.04.3.6. Kinetic studies on Rh-nitride cluster formation
8.04.3.7. Rhodium carbonyl clusters in catalysis
8.04.4. Iridium
8.04.4.1. Homometallic iridium carbonyl clusters
8.04.4.2. Heteroleptic iridium carbonyl clusters
8.04.4.3. Heterometallic heteroleptic iridium carbonyl clusters
8.04.5. Nickel
8.04.5.1. Homometallic nickel carbonyl clusters containing main-group elements
8.04.5.2. Homometallic nickel carbonyl clusters containing post-transition metals
8.04.5.3. Heterometallic nickel carbonyl clusters
8.04.5.4. Heterometallic nickel carbonyl clusters containing main-group elements
8.04.6. Palladium
8.04.6.1. Homometallic heteroleptic palladium carbonyl clusters
8.04.6.2. Heteroleptic palladium carbonyl clusters containing post-transition metals
8.04.6.3. Heterometallic heteroleptic palladium carbonyl clusters
8.04.7. Platinum
8.04.7.1. Chini clusters
8.04.7.2. Other homometallic platinum carbonyl clusters
8.04.7.3. Homometallic platinum carbonyl clusters containing post-transition metals
8.04.7.4. Heteroleptic platinum carbonyl clusters
8.04.7.5. Heterometallic platinum carbonyl clusters
8.04.8. Conclusion
Acknowledgment
References
Nickel-Carbon σ-Bonded Complexes
8.05.1. Introduction
8.05.2. Organonickel(II) complexes stabilized by tridentate ligands
8.05.2.1. (PCP)Ni complexes
8.05.2.2. (PNP)Ni complexes
8.05.2.3. PCN, NCN, PPC, SCS, NNN, and GeCGe pincer nickel complexes
8.05.2.4. Common reactivity
8.05.2.4.1. Migratory insertion
8.05.2.4.2. σ-Bond metathesis
8.05.2.4.3. Reductive elimination
8.05.2.5. Nickel alkylidene complexes, ligand redox-activity, and metal-ligand cooperativity
8.05.2.6. Biomimetic (pincer)Ni complexes
8.05.2.7. Selected catalytic reactions
8.05.3. Organonickel(II) complexes stabilized by bidentate ligands
8.05.3.1. Schiff base complexes
8.05.3.1.1. Monoanionic Schiff base complexes
8.05.3.1.2. Neutral Schiff base complexes
8.05.3.2. Bisphosphine nickel complexes
8.05.3.3. Phosphine-oxo nickel complexes
8.05.3.4. Bipyridyl nickel complexes
8.05.3.5. Synthesis of bidentate nickel(II) complexes
8.05.3.6. Common reactivity
8.05.3.6.1. Alkyl abstraction and protonation
8.05.3.6.2. Reductive elimination
8.05.3.6.3. Insertion
8.05.3.6.4. β-H elimination
8.05.3.6.5. Photoexcitation
8.05.3.7. Nickelacycles
8.05.3.8. Catalytic reactivity
8.05.3.8.1. Olefin polymerization
8.05.3.8.2. Cross-coupling
8.05.3.8.3. CO2 conversion
8.05.3.9. Biomimetic bidentate nickel complexes
8.05.4. Organonickel(II) complexes stabilized by monodentate ligands
8.05.4.1. (NHC)nickel complexes
8.05.4.2. Phosphine nickel complexes
8.05.4.3. Common reactivity
8.05.4.3.1. Cycloaddition
8.05.4.3.2. Oxidative addition
8.05.4.4. Selected catalytic reactions
8.05.5. Low-valent nickel complexes
8.05.5.1. Nickel(0) complexes
8.05.5.2. Nickel(I) complexes and representative reactivity
8.05.5.2.1. Two-electron oxidative addition and reductive elimination
8.05.5.2.2. One-electron oxidative addition and reductive elimination
8.05.5.2.3. CO2 insertion
8.05.6. High-valent nickel complexes
8.05.6.1. Nickel(III) complexes
8.05.6.2. Nickel(IV) complexes
8.05.7. Dinuclear and mixed-valent nickel complexes
8.05.7.1. Cycloaddition catalysts
8.05.7.2. Reductive elimination
8.05.7.3. Olefin polymerization catalysts
8.05.7.4. Biomimetic nickel complexes
8.05.7.5. Nickel alkylidenes
8.05.8. Conclusions and outlook
References
Cyclopentadienyl Nickel Complexes
Abbreviations
8.06.1. General comments
8.06.2. Nickelocene
8.06.2.1. Theoretical and physical investigations
8.06.3. Substituted nickelocenes, ansa-nickelocenes, and related sandwich complexes
8.06.3.1. Ring-substituted nickelocene derivatives
8.06.3.2. Ansa-nickelocenes
8.06.3.3. Mixed derivatives, related sandwich complexes, and cyclopentadienylnickel halides
8.06.4. Complexes Ni(Cp)(X)(L) with various neutral and anionic ligands
8.06.4.1. Complexes Ni(Cp)(X)(PR3) with phosphines and other phosphorus donors
8.06.4.2. Complexes with amines and other nitrogen donors
8.06.4.3. Complexes with other donors
8.06.4.4. Complexes Ni(Cp)(X)(NHC) (NHC=N-heterocyclic carbene)
8.06.4.4.1. Complexes with five-membered NHCs modified at N-substituents
8.06.4.4.2. Complexes with five-membered NHCs modified at the 4 and 5 position of the heterocycle
8.06.4.4.3. Complexes with the pentamethylcyclopentadienyl ligand
8.06.4.4.4. Complexes with NHCs linked to cyclopentadienyl or indenyl ligands
8.06.4.4.5. Complexes with ring-expanded NHCs
8.06.4.4.6. Complexes Ni(Cp)(R)(NHC) with hydrocarbyl ligands
8.06.4.4.7. Covalent complexes Ni(Cp)(X)(NHC) with other anionic ligands
8.06.4.4.8. Catalytic applications of complexes Ni(Cp)(X)(NHC)
8.06.5. Cationic complexes [Ni(Cp)(L1)(L2)]+
8.06.5.1. Cationic complexes without NHC ligands
8.06.5.2. Cationic complexes supported with NHC ligands
8.06.6. Cyclopentadienyl nickel(I) monometallic radicals
8.06.7. Bimetallic and multimetallic complexes
8.06.8. Conclusion
Acknowledgment
References
N-Heterocyclic Carbene Complexes of Nickel
Abbreviations
8.07.1. General Introduction
8.07.2. The Ni-N-heterocyclic carbene complexes
8.07.2.1. Mononuclear complexes
8.07.2.1.1. Ni0 complexes
8.07.2.1.1.1. Complexes with monodentate NHC ligands
8.07.2.1.1.1.1. Homoleptic [Ni0(NHC)2] and [Ni0(NHC)3]
8.07.2.1.1.1.2. Heteroleptic [Ni(NHC)L]
8.07.2.1.1.1.3. Heteroleptic [Ni(NHC)L2]
8.07.2.1.1.1.4. Heteroleptic [Ni(NHC)2L]
8.07.2.1.1.1.4.1 [Ni(IMes)2L], L=η2-alkene, η2-alkyne, carbonyl, and related ligands
8.07.2.1.1.1.4.2 [Ni(IMe)2L], [Ni(IiPr)2L], [Ni(InPr)2L], [Ni(ICy)2L], L=η2-alkene, η2-alkyne, η2-R2CO, and related ligands
8.07.2.1.1.1.4.3 [Ni(Me2IiPr)2L], [Ni(IiPr)2L], L=disilene, distannylene, silylene, diazo, azido, and related ligands
8.07.2.1.1.1.4.4 [Ni(NHC)2L], NHC=iMIC or cAAC
8.07.2.1.1.1.5. Heteroleptic [Ni(NHC)L3]
8.07.2.1.1.1.5.1 Heteroleptic [Ni(NHC)(CO)3]
8.07.2.1.1.1.5.2 Other heteroleptic complexes [Ni(NHC)L3]
8.07.2.1.1.1.5.3 Heteroleptic [Ni(NHC)2L2]
8.07.2.1.1.2. Chelating bis-NHC and tris-NHC ligands (Lig)
8.07.2.1.1.2.1. Type [Ni(Lig)L], [Ni(Lig)L2]
8.07.2.1.1.2.2. Type [Ni(Lig)2]
8.07.2.1.2. NiI complexes
8.07.2.1.2.1. Complexes with monodentate NHC ligands
8.07.2.1.2.1.1. Homoleptic [Ni(NHC)2]+
8.07.2.1.2.1.2. Heteroleptic [NiX(NHC)], [Ni(NHC)LX], [Ni(NHC)L2]+, [NiX(NHC)2]
8.07.2.1.2.1.2.1 [NiX(NHC)] and related complexes
8.07.2.1.2.1.2.2 [NiX(NHC)L]
8.07.2.1.2.1.2.3 [NiX(NHC)L2]
8.07.2.1.2.1.2.4 [NiX(NHC)2]
8.07.2.1.3. NiII complexes
8.07.2.1.3.1. Complexes with monodentate NHC ligands
8.07.2.1.3.1.1. Heteroleptic [NiX2(NHC)]
8.07.2.1.3.1.2. Heteroleptic [NiX2(NHC)L], [NiX2(NHC)L2], [NiX2(NHC)2]
8.07.2.1.3.1.2.1 Complexes [NiX2(NHC)]
8.07.2.1.3.1.2.2 Complexes [NiX2(NHC)L]
8.07.2.1.3.1.2.3 Complexes [NiX2(NHC)L2]
8.07.2.1.3.1.2.4 Complexes [NiX2(NHC)2]
8.07.2.1.3.2. Complexes with chelating bis-NHC and tris-NHC ligands
8.07.2.1.4. Heteroatom-functionalized NHC ligands on Ni0, NiI, and NiII centers
8.07.2.1.4.1. Bidentate ligands
8.07.2.1.4.1.1. Neutral L-donors
8.07.2.1.4.1.2. Anionic X-donors
8.07.2.1.4.2. Tridentate, tetradentate, and macrocyclic ligands
8.07.2.1.4.2.1. Complexes with functionalized symmetrical tridentate ligands with one NHC donor
8.07.2.1.4.2.2. Complexes with functionalized symmetrical tridentate ligands with two NHC donors
8.07.2.1.4.2.3. Complexes with functionalized non-symmetrical tridentate ligands
8.07.2.1.4.2.4. Complexes with functionalized tetradentate and pentadentate ligands
8.07.2.1.4.2.5. Complexes with functionalized macrocyclic ligands
8.07.2.1.5. Mononuclear complexes in higher oxidation states (NiIII, NiIV)
8.07.2.2. Binuclear and polynuclear complexes
8.07.2.2.1. One-atom halide bridges and related complexes
8.07.2.2.2. One-atom group 16 bridges and related complexes
8.07.2.2.3. One-atom group 15 bridges and related complexes
8.07.2.2.4. One-atom group 14 bridges and related complexes
8.07.2.2.5. Two- and more-atom bridges and related complexes
8.07.3. General Conclusion
Acknowledgment
References
Palladium and Platinum NHC Complexes
Nomenclature
8.08.1. Carbene complexes of palladium and platinum
8.08.1.1. Thiazole carbenes
8.08.1.2. Ring-expanded carbenes
8.08.1.3. CAAC carbenes
8.08.1.4. Heteroatom-free carbenes
8.08.2. Platinum and palladium carbene complexes in medicine
8.08.2.1. Platinum-complexes
8.08.3. Luminescent platinum and palladium carbene complexes
8.08.4. Conclusions
References
Allyl-Palladium Complexes in Organic Synthesis
Abbreviations
8.09.1. Introduction
8.09.2. Allylic oxygenation
8.09.2.1. Intermolecular allylic oxygenation
8.09.2.2. Intramolecular allylic oxygenation
8.09.2.3. Asymmetric allylic oxygenation
8.09.3. Allylic amination
8.09.3.1. Intermolecular allylic amination
8.09.3.2. Intramolecular allylic amination
8.09.3.3. Asymmetric allylic amination
8.09.4. Allylic alkylation
8.09.4.1. Intermolecular allylic alkylation
8.09.4.2. Intramolecular allylic alkylation
8.09.4.3. Asymmetric allylic alkylation
8.09.5. Miscellaneous nucleophiles in allylic substitution
8.09.6. Conclusions and outlook
Acknowledgment
References
Zerovalent Nickel Organometallic Complexes
8.10.1. Introduction
8.10.2. Nickel(0) complexes with σ-carbon-bound carbonyl and isocyanide ligands
8.10.2.1. Carbonyl complexes
8.10.2.2. Isocyanide complexes
8.10.3. Nickel(0) σ-adducts with E-H bonds (E=B, Si, Mg) and hydride-bridging ligands
8.10.3.1. σ-Adducts with E-H bonds (E=B, Si, and Mg), and hydride-bridging ligands
8.10.4. Nickel(0) complexes with olefin ligands
8.10.4.1. Complexes with the COD (1,5-cyclooctadiene) ligand
8.10.4.2. Ethylene complexes
8.10.4.3. Styrene and stilbene complexes
8.10.4.4. Polyene and polyenyne complexes
8.10.4.5. Vinyl complexes
8.10.4.6. Alkene complexes with miscellaneous π-coordinating groups
8.10.5. Nickel(0) complexes with alkyne ligands
8.10.5.1. Complexes with alkyne ligands
8.10.6. Nickel(0) complexes with π-arene ligands
8.10.6.1. Arene complexes with benzene-derived ligands
8.10.6.2. Arene complexes with pyridine, thiophene and pyrrole ligands
8.10.6.3. π-Fullerene complexes
8.10.6.4. Aryne complexes
8.10.7. Side-on nickel(0) complexes with C=E (E=O, S, N) and CN moieties
8.10.7.1. Side-on carbonyl and thiocarbonyl complexes
8.10.7.2. Side-on borane-containing complexes
8.10.7.3. Side-on imine complexes
8.10.7.4. Side-on nitrile complexes
8.10.7.5. CO2 and CS2 complexes
Acknowledgment
References
Monovalent Group 10 Organometallic Complexes
8.11.1. Introduction
8.11.2. Monovalent nickel complexes
8.11.2.1. Mononuclear nickel(I) carbonyl, isocyanide and related complexes
8.11.2.2. Mononuclear nickel(I)-carbon σ-bonded complexes
8.11.2.2.1. Mononuclear complexes with σ-alkyl and aryl ligands
8.11.2.2.2. Mononuclear complexes with cyclopentadienyl and related ligands
8.11.2.2.3. Mononuclear complexes with π-allyl ligands
8.11.2.3. Mononuclear nickel(I)-carbon π-bonded complexes
8.11.2.3.1. Mononuclear complexes with π-olefin and arene ligands
8.11.2.4. Mononuclear N-heterocyclic carbene complexes
8.11.2.5. Dinuclear nickel(I) carbonyl, isocyanide and related complexes
8.11.2.6. Dinuclear nickel(I)-carbon σ-bonded complexes
8.11.2.6.1. Dinuclear complexes with bridging σ-aryl ligands
8.11.2.6.2. Dinuclear complexes with bridging Cp and related ligands
8.11.2.7. Dinuclear nickel(I)-carbon π-bonded complexes
8.11.2.8. Dinuclear carbene complexes
8.11.2.9. Dinuclear N-heterocyclic carbene complexes
8.11.3. Monovalent palladium complexes
8.11.3.1. Carbonyl, isocyanide and related complexes
8.11.3.2. Palladium(I)-carbon σ-bonded complexes
8.11.3.2.1. Palladium(I) complexes with allyl ligands
8.11.3.2.2. Palladium(I) complexes with cyclopentadienyl ligands
8.11.3.3. Palladium(I)-carbon π-bonded complexes
8.11.3.3.1. Palladium(I) complexes with arene ligands
8.11.3.4. N-heterocyclic carbene complexes
8.11.4. Monovalent platinum complexes
8.11.4.1. Carbonyl and related ligands
8.11.4.2. Allyl ligands
8.11.4.3. Alkene ligands
8.11.5. Conclusion
References
Trivalent and Tetravalent Palladium and Platinum Organometallic Complexes
8.12.1. Palladium(III) complexes
8.12.1.1. Mononuclear organopalladium(III) complexes
8.12.1.2. Dinuclear and polynuclear organopalladium(III) complexes
8.12.1.2.1. Dinuclear bridged complexes with a PdPd bond
8.12.1.2.1.1. Paddlewheel (lantern) complexes
8.12.1.2.1.2. Half-lantern complexes
8.12.1.2.2. Dinuclear bridged complexes without a PdPd bond
8.12.1.2.3. Polynuclear bridged complexes
8.12.2. Palladium(IV) complexes
8.12.2.1. Palladium(IV) trihydrocarbyls
8.12.2.1.1. Bidentate chelating ligands
8.12.2.1.2. fac-Chelating ligands
8.12.2.2. Palladium(IV) dihydrocarbyls
8.12.2.2.1. Bidentate chelating ligands
8.12.2.2.2. fac-Chelating ligands
8.12.2.2.3. Pincer ligands
8.12.2.3. Palladium(IV) monohydrocarbyls
8.12.2.3.1. Bidentate chelating ligands
8.12.2.3.2. fac-Chelating ligands
8.12.2.3.3. Pincer ligands
8.12.2.4. Palladium(IV) complexes supported by N-heterocyclic carbene ligands
8.12.3. Platinum(III) complexes
8.12.3.1. Mononuclear organoplatinum(III) complexes
8.12.3.2. Dinuclear and polynuclear organoplatinum(III) complexes
8.12.3.2.1. Unsupported dinuclear Pt(III) complexes
8.12.3.2.2. Monobridged dinuclear Pt(III) complexes
8.12.3.2.3. Doubly bridged dinuclear Pt(III) complexes
8.12.3.2.4. Polynuclear Pt(III) complexes
8.12.4. Platinum(IV) complexes
8.12.4.1. Five-coordinate organoplatinum(IV) complexes
8.12.4.2. Six-coordinate organoplatinum(IV) complexes
8.12.4.2.1. Complexes with six hydrocarbyl ligands
8.12.4.2.2. Complexes with five hydrocarbyl ligands
8.12.4.2.3. Complexes with four hydrocarbyl ligands
8.12.4.2.4. Complexes with three hydrocarbyl ligands
8.12.4.2.4.1. Development of new anticancer drugs
8.12.4.2.4.2. Development of photoluminescent materials
8.12.4.2.4.3. New structural motifs
8.12.4.2.4.4. Preparation of trihydrocarbylplatinum(IV) complexes
8.12.4.2.4.5. Reactivity of trihydrocarbylplatinum(IV) complexes
8.12.4.2.5. Complexes with two hydrocarbyl ligands
8.12.4.2.5.1. Development of new anticancer drugs
8.12.4.2.5.2. Development of photoluminescent materials
8.12.4.2.5.3. New structural motifs
8.12.4.2.5.4. Preparation of dihydrocarbylplatinum(IV) complexes
8.12.4.2.5.5. Reactivity of dihydrocarbylplatinum(IV) complexes
8.12.4.2.6. Complexes with one hydrocarbyl ligand
8.12.4.2.6.1. Development of new anticancer drugs
8.12.4.2.6.2. Preparation of monohydrocarbylplatinum(IV) complexes
8.12.4.2.6.3. Reactivity of monohydrocarbylplatinum(IV) complexes
8.12.4.2.7. Organoplatinum(IV) complexes with no hydrocarbyl ligands
8.12.5. Conclusions
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of Volume 9
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 9
Preface
Organometallic Complexes of Copper
9.01.1. Introduction
9.01.2. Organometallic Cu(I) compounds
9.01.2.1. Organocuprate(I) complexes
9.01.2.2. Carbene-Cu(I) complexes
9.01.3. Organometallic Cu(II) compounds
9.01.3.1. Isolated organocopper(II) species
9.01.3.2. Organocopper(II) species in catalysis
9.01.4. Organometallic Cu(III) compounds
9.01.4.1. Trifluoromethyl ligands in Cu(III) complexes
9.01.4.2. N-confused porphyrins (NCPs) and carbaporphyrins
9.01.4.3. Aryl-triazamacrocyclic aryl-X and aryl-H ligands
9.01.4.4. Other aryl-containing scaffolds
9.01.4.5. Cu(III) intermediate species in catalysis
9.01.4.5.1. Ullmann-type C-heteroatom couplings
9.01.4.5.2. Cu(III) species involved in Hurtley, Stephens-Castro and Csp3-Csp3 C-C couplings
9.01.4.5.3. Photocatalyzed trifluromethylation of C-X and CH bonds
9.01.4.5.4. Organocopper(III) intermediate species in CH functionalization processes
9.01.5. Conclusions
Acknowledgment
References
Silver Organometallics
9.02.1. Introduction
9.02.2. Silver(I) organometallics
9.02.2.1. Silver complexes with alkyl, alkene, arene, aryl and related ligands
9.02.2.1.1. Introduction
9.02.2.1.2. Silver arene and aryl complexes
9.02.2.1.3. Silver alkene complexes
9.02.2.1.4. Silver alkyl complexes
9.02.2.2. Silver-carbene complexes
9.02.2.2.1. Introduction
9.02.2.2.2. Novel carbenes as ligands toward silver
9.02.2.2.3. Polynuclear complex featuring halide bridges and/or argentophilic interactions
9.02.2.2.4. Macrocyclic/cage complexes
9.02.2.3. Silver complexes with other neutral carbon ligands
9.02.2.3.1. Silver isocyanide complexes
9.02.2.3.2. Silver carbonyl complexes
9.02.2.4. Alkynyl complexes of silver
9.02.2.4.1. Extended polymeric structures
9.02.2.4.2. High-nuclearity clusters
9.02.2.4.3. Miscellaneous coordination of alkynyl moieties
9.02.3. Silver(III) organometallics
9.02.3.1. Introduction
9.02.3.2. Silver(III) complexes with porphyrinoid ligands
9.02.3.3. Silver(III) complexes with other organometallic ligands
9.02.4. Summary and outlook
References
Zinc, Cadmium and Mercury
Nomenclature
9.03.1. Introduction and scope
9.03.2. Cp-M(II) complexes (M=group 12 metals)
9.03.3. NHC-M(II) complexes (M=group 12 metals)
9.03.4. Group 12 metal hydride complexes
9.03.5. Group 12 metal alkyl peroxides by O2 insertion into MC bonds
9.03.6. Low-oxidation state group 12 metal-metal bonded compounds
9.03.7. Summary
Acknowledgment
References
Recent Development in the Solution-State Chemistry of Boranes and Diboranes
Abbreviations
9.04.1. Introduction
9.04.2. Synthetic methods for the preparation of triaryl boranes
9.04.3. Organic diboranes(4) [(alkyl/aryl)4B2]
9.04.3.1. Historical background
9.04.3.2. Synthesis of organodiboranes(4)
9.04.4. Boron-boron multiple bonds
9.04.4.1. Diborenes
9.04.4.2. Diborynes
9.04.5. Hydroboration reactions
9.04.5.1. Main-group catalyzed hydroborations
9.04.5.2. Uncatalyzed hydroborations using bis(pentafluorophenyl)borane [HB(C6F5)2]
9.04.6. Carboboration reactions
9.04.6.1. 1,1-Carboboration
9.04.6.2. 1,2-Carboboration
9.04.7. Cationic boron containing compounds
9.04.7.1. Borinium cations
9.04.7.2. Borenium cations
9.04.7.3. Boronium cations
9.04.8. Boryl anions
9.04.9. Borate weakly coordinating anions
9.04.10. Boron radicals
9.04.10.1. Anionic boron radicals
9.04.10.2. Neutral boron radicals
9.04.10.3. Cationic boron radicals
9.04.11. Frontiers
9.04.11.1. Main-group catalysis
9.04.11.2. Functional polymers
9.04.12. Conclusions
References
Polyhedral Boranes and Carboranes
9.05.1. Introduction
9.05.2. Polyhedral carboranes
9.05.2.1. Literature reviews on chemistry of some carborane derivatives
9.05.2.2. Applications of carboranes in medicine
9.05.2.3. Carborane based luminescent materials
9.05.2.4. Carboranes as weakly coordinating anions
9.05.2.5. Functional group assisted B-H activation of carboranes by transition metal complexes
9.05.2.5.1. B-H activation assisted by phosphorus-containing substituents
9.05.2.5.2. B-H activation assisted by nitrogen-containing substituents
9.05.2.5.3. B-H activation assisted by oxygen-containing substituents
9.05.2.5.4. B-H activation assisted by sulfur-containing substituents
9.05.3. Polyhedral boranes
9.05.3.1. closo-Dodecaborate anion [B12H12]2-
9.05.3.1.1. General aspects. Halogen derivatives
9.05.3.1.2. Derivatives with BO bond
9.05.3.1.3. Derivatives with BS bonds
9.05.3.1.4. Derivatives with BN bonds
9.05.3.1.5. Derivatives with BP bonds
9.05.3.1.6. Derivatives with BC bonds
9.05.3.2. closo-Undecaborate anion [B11H11]2-
9.05.3.3. closo-Decaborate anion [B10H10]2-
9.05.3.3.1. General aspects. Halogen derivatives
9.05.3.3.2. Derivatives with BO bonds
9.05.3.3.3. Derivatives with BS bonds
9.05.3.3.4. Derivatives with BN bonds
9.05.3.3.5. Derivatives with BC bonds
9.05.3.4. closo-Nonaborate anion [B9H9]2-
9.05.3.5. closo-Octaborate anion [B8H8]2-
9.05.3.6. closo-Heptaborate anion [B7H8]2-
9.05.3.7. closo-Hexaborate anion [B6H6]2-
9.05.4. Conclusions
References
Polyhedral Metallaboranes and Metallacarboranes
Nomenclature
9.06.1. Introduction
9.06.2. Metallaborane clusters
9.06.2.1. Metallaborane single cage clusters
9.06.2.1.1. Metallaborane clusters of group 4 (Table 1)
9.06.2.1.2. Metallaborane clusters of group 5 (Table 2)
9.06.2.1.3. Metallaborane clusters of group 6 (Table 3)
9.06.2.1.4. Metallaborane clusters of group 7 (Table 4)
9.06.2.1.5. Metallaborane clusters of group 8 (Table 5)
9.06.2.1.6. Metallaborane clusters of group 9 (Table 6)
9.06.2.1.7. Metallaborane clusters of group 10 (Table 7)
9.06.2.2. Metallaborane fused clusters (Table 8)
9.06.3. Metallacarborane clusters
9.06.3.1. Metallacarborane clusters of group 4 (Table 9)
9.06.3.2. Metallacarborane clusters of group 5 (Table 10)
9.06.3.3. Metallacarborane clusters of group 6 (Table 11)
9.06.3.4. Metallacarborane clusters of group 7 (Table 12)
9.06.3.5. Metallacarborane clusters of group 8 (Table 13)
9.06.3.6. Metallacarborane clusters of group 9 (Table 14)
9.06.3.7. Metallacarborane clusters of group 10 (Table 15)
9.06.3.8. Metallacarborane clusters of f-block elements (Table 16)
9.06.4. Supra-icosahedral metallaborane and metallacarborane clusters (Table 17)
Acknowledgment
References
Gallium, Indium, and Thallium
9.07.1. Introduction and scope
9.07.2. Boron-based ligands
9.07.3. Carbon-based ligands
9.07.3.1. σ Ligands
9.07.3.1.1. Carbenes
9.07.3.1.2. Alkyl substituents
9.07.3.1.3. Aryl substituents
9.07.3.2. π Ligands
9.07.3.2.1. Arene ligands
9.07.3.2.2. Cyclopentadienyl ligands
9.07.3.3. Unsaturated group 13 metal-containing heterocycles
9.07.4. Heavier group 14 element-based ligands
9.07.5. Nitrogen-based ligands
9.07.5.1. Neutral donor ligands
9.07.5.2. Hydrazide ligands
9.07.5.3. Amide ligands
9.07.5.4. Amidinate and guanidinate ligands
9.07.5.5. α-Diimine ligands
9.07.5.6. β-Diketiminate ligands
9.07.5.7. Other nitrogen-based ligands
9.07.6. Heavier group 15 element-based ligands
9.07.7. Chalcogen-based ligands
9.07.8. Conclusions
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of volume 10
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 10
Preface
Low-Valent Silicon Compounds
10.01.1. Introduction
10.01.1.1. Recent developments
10.01.1.2. Literature
10.01.2. Silylenes
10.01.2.1. Introduction
10.01.2.2. Two-coordinated silylenes
10.01.2.2.1. Cyclic silylenes
10.01.2.2.1.1. N-Heterocyclic silylenes (NHSis)
10.01.2.2.1.2. Dialkyl cyclic silylenes
10.01.2.3. Higher coordinated silylenes
10.01.2.3.1. Silylenes stabilized by chelating ligands
10.01.2.3.2. Silylenes stabilized by NHCs
10.01.2.3.3. Silylenes stabilized by cyclopentadienyl, arene, and related ligands
10.01.2.3.4. Bis-Silylenes
10.01.2.4. Acyclic silylenes
10.01.2.4.1. Isolable acyclic silylenes
10.01.2.4.2. Masked acyclic silylenes
10.01.2.5. Reactivity towards small molecules
10.01.2.5.1. Activation of H2
10.01.2.5.2. Activation of NH3
10.01.2.5.3. CO bond activation
10.01.2.5.4. CC and CC bond activation
10.01.2.5.5. Activation of P4
10.01.2.6. 29Si NMR chemical shifts of silylenes
10.01.3. Disilenes
10.01.3.1. Introduction
10.01.3.2. Aryl group substituted disilenes
10.01.3.3. Alkyl group substituted disilenes
10.01.3.4. Silyl group substituted disilenes
10.01.3.5. Heteroatom substituted disilenes
10.01.3.6. Small molecule activation with disilenes
10.01.3.6.1. Activation of H2
10.01.3.6.2. Activation of NH3
10.01.3.6.3. CO bond activation
10.01.3.6.4. CC bond activation
10.01.3.6.5. Activation of P4
10.01.3.7. 29Si NMR chemical shifts of disilenes
10.01.4. Conclusion
Acknowledgment
References
Compounds With Bonds Between Silicon and d-Block Metal Atoms
10.02.1. Introduction
10.02.2. Silyl complexes
10.02.2.1. Silyl complexes of V, and Ag
10.02.2.2. Disilane activation
10.02.2.3. Silylborane activation
10.02.3. Silylene complexes
10.02.3.1. N-heterocyclic Silylene (NHSi) complexes
10.02.3.1.1. 4-membered NHSi complexes
10.02.3.1.2. 5-membered NHSi complexes
10.02.3.1.3. 6-membered NHSi complexes
10.02.3.1.4. Further cyclic-Silylene complexes
10.02.3.2. Chelating bis(NHSi) complexes
10.02.3.3. Acyclic silylene complexes
10.02.4. Heavier derivatives of π-complexes
10.02.4.1. Disilene, and heteroatomic Silene complexes
10.02.4.2. Silapnictene complexes
10.02.4.3. Disilyne complexes
10.02.5. Silicon-transition metal triple bonds (silylidyne complexes)
10.02.6. Summary
References
Organometallic Compounds of Germanium
Nomenclature
10.03.1. Introduction
10.03.2. Compounds containing germanium carbon bonds
10.03.2.1. Preparation of compounds with GeC single bonds
10.03.2.1.1. Tetraalkyl, tetraaryl, and organofunctional germanium compounds
10.03.2.1.1.1. Synthesis from germyl hydrides
10.03.2.1.1.2. Synthesis from germyl anions
10.03.2.1.1.3. Synthesis from germyl halides
10.03.2.1.1.4. Synthesis from organogermyl compounds
10.03.2.1.2. Intracyclic germanium-carbon single bonded compounds
10.03.2.1.2.1. Small rings
10.03.2.1.2.1.1. Five-membered rings
10.03.2.1.2.1.2. Six-membered rings
10.03.2.1.2.1.3. Seven-membered rings
10.03.2.1.2.2. Large rings
10.03.2.1.2.3. Bridged cyclic rings
10.03.2.1.3. Organogermanium compounds featuring metals
10.03.2.1.3.1. Organogermanium compounds featuring group 13 metals
10.03.2.1.3.1.1. Synthesis from monoalkynylgermane
10.03.2.1.3.1.2. Synthesis from dialkynylgermanes
10.03.2.1.3.1.3. Synthesis from trialkynylgermane
10.03.2.1.3.1.4. Synthesis from tetraalkynylgermane
10.03.2.1.3.2. Organogermanium compounds with transition metals
10.03.2.2. Preparation of compounds featuring GeC double bonds
10.03.2.2.1. Acyclic germanium-carbon double bonded compounds
10.03.2.2.2. Cyclic germanium-carbon double bonded compounds
10.03.2.3. Reactivity
10.03.2.3.1. Reactivity of GeC single-bonded compounds
10.03.2.3.1.1. Reactions involving GeC bond cleavage
10.03.2.3.1.2. Coupling reactions
10.03.2.3.1.3. Other reactivities
10.03.2.3.2. Reactivity of GeC double-bonded compounds
10.03.2.3.2.1. Addition reactions
10.03.2.3.2.2. Ligand exchange reactions
10.03.3. Compounds with germanium group 17 element bonds
10.03.3.1. Synthesis of compounds with germanium group 17 element bonds
10.03.3.1.1. Synthesis from lithium salts
10.03.3.1.2. Synthesis from Grignard reagents
10.03.3.1.3. Synthesis from germanium(II) halides
10.03.3.1.4. Synthesis from germane hydrides
10.03.3.1.5. Synthesis via halogen exchange reactions
10.03.3.2. Reactivity of germanium halogen bonded compounds
10.03.4. Compounds with germanium-hydrogen bonds
10.03.4.1. Synthesis of compounds with germanium-hydrogen bonds
10.03.4.1.1. Reduction of halogermanes
10.03.4.1.2. Addition to unsaturated germanium compounds
10.03.4.1.3. Oxidative addition to germylenes
10.03.4.1.4. Other procedures
10.03.4.2. Reactivity of compounds with germanium-hydrogen bonds
10.03.4.2.1. Germanium cation/anion formation
10.03.4.2.2. Hydrogermylation reactions
10.03.5. Compounds with germanium-group 15 element bonds
10.03.5.1. Synthesis of compounds with GeE single bonds (E = group 15 element)
10.03.5.1.1. Synthesis from alkali metal salts
10.03.5.1.2. Synthesis from germylenes
10.03.5.1.3. Synthesis via other methods
10.03.5.2. Synthesis of compounds with germanium doubly-bonded to group 15 elements
10.03.5.3. Reactivity of germanium group 15 element bonded compounds
10.03.6. Compounds with germanium-group 16 element bonds
10.03.6.1. Synthesis
10.03.6.1.1. Synthesis of compounds with germanium-oxygen bonds
10.03.6.1.2. Synthesis of compounds with germanium bonded to sulfur, selenium or tellurium
10.03.6.2. Reactivity of germanium-chalcogen bonded compounds
10.03.7. Compounds with germanium-metal (or metalloid) bonds
10.03.7.1. Compounds with Ge-alkali metal bonds
10.03.7.1.1. Synthesis
10.03.7.1.2. Reactivity of compounds with Ge-alkali metal bonds
10.03.7.2. Compounds with germanium-group 13 metal (metalloid) bonds
10.03.7.3. Germanium compounds with group 14 metal/metalloid bonds
10.03.7.3.1. Synthesis of compounds with GeSi bonds
10.03.7.3.2. Synthesis of compounds with GeSn bonds
10.03.7.3.3. Synthesis of compounds with GePb bonds
10.03.7.3.4. Reactivity
10.03.7.4. Compounds with germanium-transition metal bonds
10.03.7.4.1. Synthesis
10.03.7.4.1.1. Synthesis of complexes having Ge-metal single bond
10.03.7.4.1.1.1. Synthesis from spiro-germanium compound
10.03.7.4.1.1.2. Synthesis from germanium halides/organogermane
10.03.7.4.1.1.3. Synthesis from germyl hydrides
10.03.7.4.1.1.4. Synthesis from germyl anions
10.03.7.4.1.1.5. Synthesis from digermanes
10.03.7.4.1.2. Synthesis of compounds containing germanium metal double bonds
10.03.7.4.1.2.1. Synthesis from germylene monochloride
10.03.7.4.1.2.2. Synthesis from germyl hydrides
10.03.7.4.1.3. Synthesis of compounds containing germanium metal triple bonds
10.03.7.4.1.3.1. Synthesis from germylene monochlorides
10.03.7.4.1.3.2. Synthesis from germyl anions
10.03.7.4.1.3.3. Synthesis from germylidene metal complex
10.03.7.4.2. Reactivity of compounds having germanium transition metal bonds
10.03.7.4.2.1. Substitution reactions
10.03.7.4.2.2. Addition reactions
10.03.7.4.2.3. Reactions leading to cationic metal germanium complexes
10.03.7.4.2.4. Transition metal-germanium compounds as catalysts in organic transformations
10.03.8. Germanium containing polymers
10.03.8.1. Synthesis by addition polymerization
10.03.8.2. Synthesis by condensation polymerization
10.03.8.3. Synthesis by Suzuki polycondensation
10.03.8.4. Synthesis by Stille polycondensation
10.03.8.5. Synthesis by Yamamoto coupling
10.03.8.6. Synthesis by Witting reaction
10.03.8.7. Synthesis from germyl halides
10.03.8.8. Synthesis from a germyl hydride
10.03.8.9. Synthesis from germylenes
10.03.8.10. Synthesis using transition metal precursors
10.03.8.11. Polymers with germanium pendants
10.03.9. Germylenes
10.03.9.1. Preparation
10.03.9.1.1. Acyclic germylenes
10.03.9.1.2. N-Heterocyclic germylenes
10.03.9.1.2.1. Four membered N-heterocyclic germylenes
10.03.9.1.2.2. Five-membered N-heterocyclic germylenes
10.03.9.1.2.3. Six-membered N-heterocyclic germylenes
10.03.9.1.3. Heterocyclic germylenes
10.03.9.1.3.1. Four-membered heterocyclic germylenes
10.03.9.1.3.2. Five membered heterocyclic germylene
10.03.9.1.3.3. Six-membered heterocyclic germylenes
10.03.9.1.4. Germylenes with donor arm(s) and their metal complexes
10.03.9.1.5. Pincer ligand stabilized germylenes and their metal complexes
10.03.9.1.6. Bis(germylenes) and their metal complexes
10.03.9.1.6.1. Spacer separated bis(germylenes)
10.03.9.1.6.2. Chelating and pincer bis(germylenes)
10.03.9.1.7. Carbene stabilized germylenes
10.03.9.1.8. Air and water stable germylenes
10.03.9.1.9. Germylene cations
10.03.9.1.9.1. Germylene monocations
10.03.9.1.9.1.1. Synthesis of germylene monocation by halide abstraction from monohalogermylenes
10.03.9.1.9.1.2. Synthesis of germylene monocations by chloride abstraction from dichlorogermylenes
10.03.9.1.9.1.3. Synthesis of germylene monocation from autoionization of GeCl21,4-dioxane
10.03.9.1.9.2. Germylene dications
10.03.9.1.9.3. Bis(germylene) cations
10.03.9.1.9.4. Miscellaneous reactions leading to the formation of germanium(II) cations
10.03.9.1.10. Germylene anions
10.03.9.1.11. Germylene radicals
10.03.9.2. Reactivity of germylenes
10.03.9.2.1. Oxidation reactions
10.03.9.2.1.1. Oxidation reactions of acyclic germylenes
10.03.9.2.1.1.1. Oxidation reactions with chalcogens
10.03.9.2.1.1.2. Oxidative addition and cycloaddition reactions
10.03.9.2.1.2. Oxidation reactions of cyclic germylenes
10.03.9.2.1.2.1. Oxidation reactions with chalcogens
10.03.9.2.1.2.1.1 Oxidation reactions with oxygen precursors
10.03.9.2.1.2.1.2 Oxidation reactions with elemental sulfur and selenium
10.03.9.2.1.2.1.3 Oxidation reactions with elemental tellurium
10.03.9.2.1.2.2. Cycloaddition reactions
10.03.9.2.2. Reduction reactions
10.03.9.2.2.1. Reduction of acyclic germylenes and reduced products reactivity
10.03.9.2.2.2. Reduction of four-membered germylenes and reactivity of the reduced products
10.03.9.2.2.3. Reduction of five-membered germylenes and reactivity of the reduced products
10.03.9.2.2.4. Reduction of six-membered germylenes and reactivity of the reduced products
10.03.9.2.3. Germylones
10.03.9.2.3.1. Acyclic germylones
10.03.9.2.3.2. Cyclic germylones
10.03.9.2.3.2.1. Chelate ligand stabilized germylones
10.03.9.2.3.2.2. Pincer ligand stabilized germylones
10.03.9.2.4. Coordination chemistry of germylenes
10.03.9.2.4.1. Germylene stabilized main group element complexes
10.03.9.2.4.2. Germylene stabilized transition metal complexes
10.03.9.2.4.2.1. Four-membered cyclic germylene stabilized group 6 metal complexes
10.03.9.2.4.2.2. Four membered cyclic germylene stabilized group 8 metal complexes
10.03.9.2.4.2.3. Four-membered germylene stabilized group 11 and 12 metal complexes
10.03.9.2.4.2.4. Five-membered germylene stabilized group 6 and 7 metal complexes
10.03.9.2.4.2.5. Five-membered germylene stabilized group 8, 9, and 10 metal complexes
10.03.9.2.4.2.6. Five-membered germylene stabilized group 11 metal complexes
10.03.9.2.4.2.7. Five-membered germylene stabilized group 12 metal complexes
10.03.9.2.4.2.8. Six-membered germylene stabilized metal complexes
10.03.9.2.4.2.9. Miscellaneous germylene stabilized metal complexes
10.03.9.2.5. Germylenes and their metal complexes as catalysts
10.03.9.2.5.1. Catalytic hydroboration of aldehydes and ketones
10.03.9.2.5.2. Cyanosilylation
10.03.9.2.5.3. Other catalytic reactions
10.03.10. Compounds with germanium-germanium single bonds
10.03.10.1. Synthesis
10.03.10.1.1. Synthesis of digermanes
10.03.10.1.2. Synthesis of linear oligogermanes
10.03.10.1.3. Synthesis of branched oligogermanes
10.03.10.1.4. Synthesis of polygermanes
10.03.10.1.5. Synthesis of metal complex supported oligogermanes
10.03.10.1.6. Synthesis of cyclic oligogermanes
10.03.11. Compounds with germanium-germanium multiple bonds
10.03.11.1. Synthesis
10.03.11.1.1. Synthesis of compounds with GeGe bonds
10.03.11.1.1.1. Synthesis from germylene
10.03.11.1.1.2. Synthesis from germyl halides
10.03.11.1.2. Synthesis of compounds with GeGe bonds
10.03.11.1.2.1. Synthesis from digermene
10.03.11.1.2.2. Synthesis from germylenes
10.03.11.1.3. Synthesis of cyclic compounds with GeGe bonds
10.03.11.1.3.1. Synthesis of three-membered rings with GeGe bonds
10.03.11.1.3.2. Synthesis of four-membered rings with GeGe bonds
10.03.11.1.3.3. Synthesis of six-membered rings with GeGe bonds
10.03.11.2. Reactivity of germanium germanium multiply bonded compounds
10.03.11.2.1. Reactivity of compounds with GeGe bonds
10.03.11.2.2. Reactivity of compounds with GeGe bonds
10.03.11.2.3. Reactivity of cyclic compounds with GeGe bonds
10.03.11.2.3.1. Reactivity of three-membered cyclic compounds with GeGe bonds
10.03.11.2.3.2. Reactivity of four-membered cyclic compounds with GeGe bonds
10.03.11.2.3.3. Reactivity of six-membered cyclic compounds with GeGe bonds
10.03.12. Conclusion
Acknowledgment
References
Organometallic Compounds of Tin and Lead
10.04.1. Introduction and scope
10.04.2. Tin(IV) and Pb(IV) compounds
10.04.2.1. Organostannanes and -plumbanes R(4-n)EXn
10.04.2.2. Catenated compounds and clusters
10.04.2.3. Stannylium and plumbylium cations R3E+
10.04.3. Tin(II) and lead(II) compounds
10.04.3.1. Stannylenes and plumbylenes R2E
10.04.3.1.1. R=alkyl, alkenyl
10.04.3.1.2. R=aryl
10.04.3.1.3. R=cyclopentadienyl
10.04.3.2. Methanediides (R2C)E
10.04.3.3. Stannate and plumbate anions R3E-
10.04.4. Compounds with EE and EE multiple bonds
10.04.4.1. Bonding models and theoretical studies
10.04.4.2. Distannenes and diplumbenes R2EER2
10.04.4.3. Distannynes and diplumbynes REER/RE-ER
10.04.4.4. Stannaethenes R2ECR2
10.04.5. Unsaturated heterocycles
10.04.5.1. Stannoles and plumboles
10.04.5.2. Stannabenzenes, plumbabenzenes and related compounds
10.04.6. Compounds with ME, ME and ME bonds
10.04.6.1. Complexes of stannylenes and plumbylenes R2E
10.04.6.2. Metallostannylenes and plumbylenes
10.04.6.3. Complexes with ME triple bonds (stannylidynes and plumbylidynes)
References
Organometallic Compounds of Arsenic, Antimony and Bismuth
10.05.1. Introduction
10.05.1.1. Preface
10.05.1.2. Organization of the material
10.05.2. Monovalent compounds
10.05.2.1. Carbene-stabilized pnictinidenes
10.05.2.2. Multidentate ligand-stabilized pnictinidenes
10.05.3. Divalent compounds
10.05.4. Trivalent compounds
10.05.4.1. Pnictogen-carbon metal-carbon multiple-bonded compounds
10.05.4.2. Pnictogen-pnictogen bonded compounds
10.05.4.2.1. Diarsines, distibines, and dibismuthines
10.05.4.2.2. Diarsenes, distibenes, and dibismuthenes
10.05.4.2.3. Polypnictogen compounds
10.05.4.3. Pnictogen hydrides
10.05.4.4. Transition-metal-pnictogen bonded compounds
10.05.4.5. Cyclopentadienyl compounds
10.05.4.6. Triorganopnictogen(III) compounds
10.05.4.7. Diorganopnictogen(III) compounds
10.05.4.8. Monoorganopnictogen(III) compounds
10.05.5. Pentavalent compounds
10.05.5.1. Tetraorganopnictogen(V) compounds
10.05.5.2. Triorganopnictogen(V) compounds
10.05.5.3. Diorganopnictogen(V) compounds
10.05.5.4. Monoorganopnictogen(V) compounds
10.05.6. Conclusions
Acknowledgment
References
Frustrated Lewis Pair Systems
10.06.1. Introduction
10.06.2. Bond activation
10.06.2.1. Introduction
10.06.2.2. Dihydrogen
10.06.2.3. π-Systems
10.06.2.3.1. Alkenes
10.06.2.3.2. Alkynes
10.06.2.3.3. Carbonyl compounds
10.06.2.3.4. Ethers
10.06.2.4. Ring openings and contractions
10.06.2.4.1. Lactone and lactide
10.06.2.4.2. Cyclopropanes
10.06.2.4.3. Epoxides
10.06.2.5. Small molecule oxides
10.06.2.5.1. Carbon dioxide
10.06.2.5.2. Nitrous oxide
10.06.2.5.3. Sulfur dioxide
10.06.2.5.4. Carbon monoxide
10.06.2.5.5. Carbon disulfide
10.06.2.5.6. Nitric oxide
10.06.2.6. Other bond activation processes
10.06.2.6.1. C-F activation
10.06.2.6.2. B-H activation
10.06.2.6.3. S-S activation
10.06.2.7. N-containing species
10.06.2.7.1. Azides
10.06.2.7.2. Isocyanates
10.06.2.7.3. Nitrosobenzene (PhNO)
10.06.2.7.4. Azo compounds
10.06.2.7.5. Carbodiimides
10.06.2.7.6. Mesityl nitrile-N-oxide (MesCNO)
10.06.2.7.7. N-sulfinylamine (R-NSO)
10.06.2.7.8. Diazo compounds
10.06.2.7.9. Nitriles
10.06.3. Main group FLPs beyond phosphine-borane pairs
10.06.3.1. Introduction
10.06.3.2. Nitrogen-based FLPs
10.06.3.3. Carbon-based FLPs
10.06.3.4. Silicon-based FLPs
10.06.3.5. Aluminum-based FLPs
10.06.3.6. Gallium-based FLPs
10.06.3.7. Germanium and tin-based FLPs
10.06.3.8. Other non-traditional main group-based FLPs
10.06.4. FLPs in catalysis
10.06.4.1. Introduction
10.06.4.2. Hydrogenation catalysis
10.06.4.2.1. First examples
10.06.4.2.2. Expanding the hydrogenation scope
10.06.4.2.2.1. CN bond hydrogenations
10.06.4.2.2.2. CO bond hydrogenations
10.06.4.2.2.3. CC and CC bond hydrogenations
10.06.4.2.3. Asymmetric hydrogenations
10.06.4.2.4. Water tolerant FLPs
10.06.4.3. Beyond hydrogenation: Other catalytic transformations
10.06.4.3.1. Hydrosilylation
10.06.4.3.2. Transfer hydrogenation
10.06.4.3.3. Dehydrogenation of aminoboranes
10.06.4.3.4. Hydroamination
10.06.4.3.5. CO2 reduction
10.06.4.3.6. Hydroboration and C-H borylation
10.06.4.3.7. C-F derivatization
10.06.4.3.8. Polymerization catalysis
10.06.4.3.8.1. Polymerization of polar vinyl monomers
10.06.4.3.8.2. Ring open (co)polymerization
10.06.5. Mechanistic considerations
10.06.5.1. Introduction
10.06.5.2. Thermodynamics of H2 splitting by FLPs
10.06.5.3. Frustrated complex
10.06.5.4. Electron transfer (ET) model
10.06.5.5. Electric field (EF) model
10.06.5.6. Coexistence of ET and EF
10.06.5.7. Summary
10.06.6. Transition metal Frustrated Lewis Pairs
10.06.6.1. Introduction
10.06.6.2. Transition metal Frustrated Lewis Pairs with one metal
10.06.6.2.1. Early and mid-transition metals
10.06.6.2.2. Late transition metals
10.06.6.2.3. Rare-earth metals
10.06.6.3. Transition metal Frustrated Lewis Pairs with two metals
10.06.7. Recent approaches and revising FLP-like systems
10.06.7.1. Solid-state and heterogeneous FLP chemistry
10.06.7.1.1. Semi-immobilized Frustrated Lewis Pairs
10.06.7.1.2. Immobilized Frustrated Lewis Pairs
10.06.7.1.2.1. Solid Lewis acid and solid Lewis base
10.06.7.1.2.2. Immobilized Frustrated Lewis Pairs
10.06.7.1.2.3. Incorporating Frustrated Lewis Pairs into porous materials
10.06.7.1.2.4. 2D Frustrated Lewis Pair materials
10.06.7.1.2.5. Metal oxides as FLP systems
10.06.7.2. Frustrated radical pairs
10.06.7.2.1. P/B and P/Al based radical FLP systems
10.06.7.2.2. Carbon and silicon based radical FLP systems
10.06.7.2.3. Nitrogen and oxygen based radical FLP systems
10.06.7.2.4. Other radical FLPs and pseudo-FLP systems
10.06.7.2.5. Photoinduced vs thermal SET in radical FLP systems
10.06.7.2.6. Applications of radical FLP derivatives for organic synthesis
10.06.8. Conclusions
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Copyright
Contents of volume 11
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 11
Preface
11.01 Overview and Introduction
11.02 Lithium Complexes in Organic Synthesis
11.02.1. Introduction
11.02.2. Preparation of lithium reagents
11.02.3. Reactivity of lithium reagents
11.02.4. Functionalized lithium complexes in synthesis
11.02.4.1. Use of oxygen-bearing lithium compounds in synthesis
11.02.4.2. Use of nitrogen-bearing lithium compounds in synthesis
11.02.4.3. Use of sulfur-bearing lithium compounds in synthesis
11.02.4.4. Use of phosphorous-bearing lithium compounds in synthesis
11.02.4.5. Use of boron-bearing lithium compounds in synthesis
11.02.4.6. Use of halogen-bearing lithium compounds in synthesis
11.02.5. Special lithium complexes
11.02.5.1. Carbamoyllithiums
11.02.5.2. Strained lithium compounds
11.02.5.3. Secondary lithium compounds
11.02.6. Diverse reactions of lithium compounds
11.02.6.1. Rearrangements and migrations
11.02.6.2. Directed lithiations
11.02.6.3. Cross couplings with lithium compounds
11.02.7. Flow technology and flash chemistry with lithium compounds
11.02.8. Conclusions
References
11.03 Sodium and Potassium Complexes in Organic Synthesis
11.03.1. Introduction and background
11.03.2. Sodiation/potassiation reagents-Structures and preparation
11.03.2.1. Lochmann-Schlosser bases
11.03.2.2. Alkylsodium and alkylpotassium
11.03.2.3. Sodium and potassium amides
11.03.2.3.1. Sodium 2,2,6,6-tetramethylpiperidide (NaTMP)
11.03.2.3.2. Potassium 2,2,6,6-tetramethylpiperidide (KTMP)
11.03.2.3.3. Sodium diisopropylamide (NaDA)
11.03.2.3.4. Potassium diisopropylamide (KDA)
11.03.3. Metalation
11.03.3.1. Metalation of alkenes
11.03.3.1.1. Metalation of vinylic positions
11.03.3.1.2. Metalation of allylic positions
11.03.3.2. Metalation of (hetero)arenes
11.03.3.3. Metalation of alkyl(hetero)arenes
11.03.3.4. Metalation of carbonyl compounds and their derivatives
11.03.4. Hydroamination of alkenes
11.03.5. Conclusion
References
11.04 Magnesium Complexes in Organic Synthesis
11.04.1. Introduction
11.04.2. Stoichiometric reactions
11.04.2.1. Reactions with carbon monoxide
11.04.2.2. Reaction with carbon dioxide
11.04.2.3. Transformations using Mg(I)Mg(I) compounds
11.04.2.4. Reactions with isocyanate
11.04.3. Catalytic reactions
11.04.3.1. Hydrogenation
11.04.3.2. Hydroboration
11.04.3.3. Hydrosilylation
11.04.3.4. Hydrostannylation
11.04.3.5. Dehydrocoupling
11.04.3.6. Hydroamination
11.04.4. Ring-opening polymerization
11.04.5. Conclusions
References
11.05 Calcium, Strontium and Barium Complexes in Organic Synthesis
Abbreviations
11.05.1. Alkaline-earth metal catalysis: An introduction
11.05.1.1. General background
11.05.1.2. The Schlenk equilibrium: Problems and solutions
11.05.1.3. Historical developments
11.05.1.4. Principles of Ae-mediated catalysis
11.05.2. Hydroamination of unsaturated carbon-carbon bonds
11.05.2.1. Intramolecular hydroamination reactions
11.05.2.2. Asymmetric intramolecular hydroamination reactions
11.05.2.3. Intermolecular hydroamination reactions
11.05.2.3.1. Intermolecular hydroamination of alkenes
11.05.2.3.2. Intermolecular hydroamination of carbodiimides and isocyanates
11.05.2.3.3. Intermolecular hydroamination of alkynes
11.05.2.3.4. Intermolecular hydroamination of diynes
11.05.3. Hydrophosphination and related catalysis
11.05.3.1. Intermolecular hydrophosphination of alkenes
11.05.3.2. Intermolecular hydrophosphination of alkynes
11.05.3.3. Hydrophosphination of carbodiimides
11.05.3.4. Hydrophosphorylation and hydrophosphonylation catalysis
11.05.3.4.1. Hydrophosphorylation of alkynes
11.05.3.4.2. Hydrophosphonylation of aldehydes and ketones
11.05.4. Other hydrofunctionalization reactions with pre-polarized E-H substrates
11.05.4.1. Hydroalkoxylation of alkynyl and allenyl alcohols
11.05.4.2. Hydroacetylenation of carbodiimides and related reactions
11.05.4.3. Hydroboration catalysis
11.05.4.4. Hydrosilylation catalysis
11.05.4.4.1. Hydrosilylation of alkenes
11.05.4.4.2. Hydrosilylation of ketones
11.05.4.4.3. Hydrosilylation of imines
11.05.5. Hydrogenation catalysis
11.05.5.1. Hydrogenation of alkenes
11.05.5.1.1. Hydrogenation of activated alkenes
11.05.5.1.2. Hydrogenation of unactivated alkenes
11.05.5.2. Hydrogenation of imines
11.05.6. Dehydrocoupling catalysis
11.05.6.1. Dehydrocoupling of amines and boranes
11.05.6.1.1. Synthesis of asymmetrical diaminoboranes
11.05.6.1.2. Dehydrocoupling of dimethylamine-borane and tert-butylamine-borane
11.05.6.1.3. Dehydrocoupling of amines and boranes
11.05.6.2. Heterodehydrocoupling of amines and silanes
11.05.6.2.1. Catalyzed NH/HSi heterodehydrocouplings for the formation of mono- and disilazanes
11.05.6.2.1.1. Catalyst selection and substrate scope
11.05.6.2.1.2. Mechanistic insight
11.05.6.2.2. Formation of cyclic disilazanes
11.05.6.2.3. Catalyzed NH/HSi dehydropolymerizations
11.05.6.3. Other alkaline-earth catalyzed heterodehydrocouplings
11.05.6.3.1. Dehydrocouplings of silanes and alcohols
11.05.6.3.2. Dehydrocouplings of silanes and borinic acids
11.05.6.3.3. Dehydrocouplings of silanes and silanols
11.05.6.3.4. Dehydrogenative silylation of activated CH bonds
11.05.7. Miscellaneous catalyzed reactions with reactive [Ae]-X (pre)catalysts
11.05.7.1. Dimerization of aldehydes-Tishchenko reaction
11.05.7.2. Trimerization of isocyanates
11.05.7.3. Alkylation reactions
11.05.7.3.1. Dimerization of terminal alkynes
11.05.7.3.2. Alkylation of aromatic rings
11.05.7.3.3. Alkylation of alkylpyridines
11.05.7.4. Catalyzed H/D exchange
11.05.7.5. Polymerization of ethylene
11.05.7.6. Reduction of carbon-oxygen unsaturated compounds
11.05.7.7. Redistribution and cross-coupling of arylsilanes
11.05.7.8. Reactions other than hydrofunctionalizations and dehydrocouplings
11.05.7.8.1. Desilacoupling of silaboranes and amines
11.05.7.8.2. Cyanosilylation of carbonyls
11.05.7.8.3. Alumination of Csp2H bonds
11.05.8. Alkaline-earth mediated Lewis-acid catalysis
11.05.8.1. Introduction
11.05.8.1.1. Lewis acidity of the group 2 metal cations
11.05.8.1.2. Measuring Lewis acidity
11.05.8.2. Lewis acid catalyzed transformations: CC bond forming reactions
11.05.8.2.1. Mannich reactions
11.05.8.2.2. Cycloaddition reactions
11.05.8.2.2.1. [3+2] cycloadditions
11.05.8.2.2.2. [4+2] cycloadditions
11.05.8.2.3. Chiral 1,4-addition reactions
11.05.8.2.4. Hydroarylation of alkenes
11.05.8.2.5. Heterofunctionalization of alkenes
11.05.8.2.6. Cyclic rearrangements
11.05.8.2.6.1. Nazarov cyclisation
11.05.8.2.6.2. Aza-Piancatelli cyclization
11.05.8.2.7. Ca2+-catalyzed dehydroxylation reactions
11.05.9. In lieu of a conclusion
Acknowledgment
References
11.06 Zinc Reagents in Organic Synthesis
11.06.1. Introduction
11.06.2. Preparation of organozinc compounds
11.06.2.1. Synthetic routes to prepare homometallic zinc reagents
11.06.2.1.1. Direct insertion of zinc into metal-halogen bonds
11.06.2.1.2. Advances in directed metalation
11.06.2.1.3. Transmetalation routes to prepare organozinc complexes
11.06.2.1.4. Metal-halogen exchange routes to organozinc reagents
11.06.2.2. Preparation of heterometallic compounds
11.06.2.2.1. Co-complexation preparation routes toward heterometallic zincates
11.06.2.2.2. Formation of heterometallic complexes via trans-metal trapping
11.06.3. Applications of organozinc reagents in addition reactions
11.06.3.1. Overview
11.06.3.2. Addition to carbonyl compounds
11.06.3.2.1. Alkylation of carbonyl compounds
11.06.3.2.2. Alkenylation (vinylation) of carbonyls
11.06.3.2.3. Alkynylation of carbonyls
11.06.3.2.4. Arylation of carbonyls
11.06.3.3. Conjugate 1,4-addition to α,β-unsaturated compounds
11.06.3.4. Addition to carbon dioxide
11.06.3.5. Addition to imines
11.06.3.6. Addition to oxabicyclic alkenes
11.06.3.7. Chelation-controlled additions
11.06.3.8. Tandem reactions using organozinc reagents
11.06.3.9. Summary
11.06.4. Applications of organozinc reagents in substitution reactions
11.06.4.1. Overview
11.06.4.2. Asymmetric allylic substitutions
11.06.4.3. Alkylations
11.06.4.4. Alkenylation reactions
11.06.4.5. rylation reactions
11.06.4.6. Summary
11.06.5. Application of organozinc reagents in cross-coupling reactions
11.06.5.1. Overview
11.06.5.2. Negishi cross-coupling reactions
11.06.5.3. Synthesis of functionalized ketones
11.06.5.4. Barbier reactions
11.06.5.5. Summary
11.06.6. Catalytic applications using organozinc reagents
11.06.6.1. Overview
11.06.6.2. Hydrosilylation and dehydrogenative silylation
11.06.6.3. Zinc-catalyzed hydroboration and borylation reactions
11.06.6.4. Zinc-catalyzed hydroamination reactions
11.06.6.5. Summary
11.06.7. Reactivity of molecular zinc hydrides
11.06.7.1. Overview
11.06.7.2. Insertion of unsaturated substrates into ZnH bonds
11.06.7.3. Hydrosilylation reactions
11.06.7.4. Dehydrocoupling of alcohols and silanes
11.06.7.5. Borylation and hydroboration of terminal alkynes
11.06.7.6. Hydrogenation of imines
11.06.7.7. Summary
11.06.8. Reactivity and applications of N-heterocyclic carbene zinc complexes
11.06.8.1. Overview
11.06.8.2. Hydrosilylation of CO2 using NHC-Zn-alkyl complexes
11.06.8.3. Hydroamination of carbodiimides using NHC-Zn-bis(amide) complexes
11.06.8.4. Chiral NHC-Zn-alkyl catalysts for enantioselective allylic alkylations
11.06.8.5. Summary
11.06.9. Organozinc pivalates as enhanced air- and moisture-stability reagents
11.06.9.1. Overview
11.06.9.2. The application of zinc-pivalates in cross-coupling reactions
11.06.9.3. Application of organozinc pivalates in acylations, allylations and carbocuprations
11.06.9.4. Summary
11.06.10. Reactivity of heterometallic organozinc compounds
11.06.10.1. Overview
11.06.10.2. Deprotonative metalation
11.06.10.3. Metal-halogen exchange using heterometallic zincate reagents
11.06.10.4. Addition reactions
11.06.10.5. Silylzincation reactions
11.06.10.6. Cross-coupling reactions
11.06.10.7. Summary
11.06.11. Conclusions
Acknowledgment
References
11.07 Boron Complexes in Organic Synthesis
11.07.1. General introduction
11.07.2. Boronic acid catalysis
11.07.2.1. Introduction
11.07.2.2. Electrophilic activation
11.07.2.3. Nucleophilic activation
11.07.2.4. Boron-based chiral Brønsted acid catalysts
11.07.3. Transition metal-catalyzed methods
11.07.3.1. Introduction
11.07.3.2. Transition metal-catalyzed cross-coupling
11.07.3.3. Combining transition metal catalysis with metalate rearrangements
11.07.3.4. Photoredox-based methods
11.07.3.4.1. Dual-catalyzed photoredox cross-coupling of alkyltrifluoroborates
11.07.3.4.2. Photoredox activation of boronic acid and esters for C(sp2)C(sp3) cross-coupling
11.07.4. Transition metal-free methods
11.07.4.1. Introduction
11.07.4.2. Transition metal-free borylation
11.07.4.3. Transition metal-free cross-coupling
11.07.4.4. Developments and applications in 1,2-metalate rearrangements
11.07.4.5. Metal-free photoredox processes
11.07.5. Synthetic applications of boronate and boryl anions
11.07.5.1. Introduction
11.07.5.2. Boronate anions
11.07.5.3. Boryl anions
11.07.5.3.1. Formation and examples
11.07.5.3.2. Synthetic applications
11.07.6. Summary
Acknowledgment
References
11.08 Aluminum Complexes in Organic Synthesis
11.08.1. Introduction
11.08.2. Reduction reactions
11.08.2.1. Reduction of carbonyl compounds: Aldehydes, ketones, esters and amides
11.08.2.1.1. Meerwein-Ponndorf-Verley (MPV) reduction
11.08.2.1.2. Hydroboration
11.08.2.1.3. Hydrosilylation
11.08.2.1.4. Cyanation reactions
11.08.2.1.5. Hydrophosphonylation reactions
11.08.2.1.6. Tishchenko reactions
11.08.2.2. Reduction of carbon dioxide
11.08.2.2.1. Formation of cyclic carbonates
11.08.2.2.2. Formation of methanol equivalents and/or methane
11.08.2.2.2.1. Hydroboration
11.08.2.2.2.2. Hydrosilylation
11.08.2.3. Reduction of alkenes and alkynes
11.08.2.3.1. Hydroboration
11.08.2.3.2. Hydrosilylation
11.08.2.3.3. Hydrophosphination
11.08.2.3.4. Hydroamination
11.08.2.4. Reduction of unsaturated C-N fragments: Imines, carbodiimides, nitriles
11.08.2.4.1. Hydroboration
11.08.2.4.2. Hydrosilylation
11.08.2.4.3. Hydrogenation
11.08.2.4.4. Hydrophosphonylation and hydrophosphination reactions
11.08.2.4.5. Hydroamination
11.08.3. Oxidation reactions
11.08.3.1. Oppenauer oxidation
11.08.3.2. Oxidations with hydrogen peroxide
11.08.3.3. Oxidations with complexes bearing non-innocent ligands
11.08.4. Addition reactions
11.08.4.1. Conjugate additions
11.08.4.2. Mukaiyama aldol reactions
11.08.4.3. Passerini reactions
11.08.5. Cyclization reactions
11.08.5.1. Diels-Alder reactions
11.08.5.2. Passerini-type reactions
11.08.5.3. Intramolecular Prins reactions
11.08.5.4. Ring-closing metathesis
11.08.6. Miscellaneous reaction
11.08.7. The hidden Brønsted acid (catalysis) conundrum
11.08.8. Conclusion
References
11.09 Gallium and Indium Complexes in Organic Synthesis
11.09.1. Introduction
11.09.2. Preparation of organogallium compounds
11.09.2.1. Oxidative addition of organic halides
11.09.2.2. Transmetalation
11.09.3. Gallium complexes in organic synthesis
11.09.3.1. Allylation reactions
11.09.3.1.1. Diastereoselective allylation of aldehydes
11.09.3.2. Alkenylation reactions
11.09.3.3. Ethynylation reactions
11.09.3.4. Addition to carbonyl compounds
11.09.3.4.1. Reductive lactonization of γ-keto acids
11.09.3.4.2. Synthesis of gem-diacetates
11.09.3.4.3. Stereoselective synthesis of E-configured α,β-unsaturated ketones
11.09.3.4.4. Deoxygenation of aryl ketones
11.09.3.4.5. Carbonyl-olefin ring closing reactions
11.09.3.4.6. Transition metal-free synthesis of nitriles
11.09.3.4.7. Chloroacylation of alkynes
11.09.3.4.8. Skeletal-α,α,α-trisubstituted aldehyde rearrangement
11.09.3.5. Carbogallation reactions
11.09.3.6. Reduction reactions
11.09.3.7. Coupling reactions
11.09.3.8. Cycloaddition reactions
11.09.3.9. Cycloisomerization reactions
11.09.3.10. Insertion reactions
11.09.3.10.1. Use as Lewis acids and bases
11.09.3.11. Miscellaneous
11.09.3.11.1. Synthesis of 4-halotetrahydropyrans
11.09.3.11.2. Disulfidation of alkynes and alkenes
11.09.3.11.3. Annulation reactions
11.09.3.11.4. Hydroamination reaction
11.09.3.11.5. Ring opening of epoxides
11.09.3.11.6. Biginelli reaction under solvent-free conditions
11.09.3.11.7. Catalytic applications of [IPr.GaX2][SbF6] and associated species
11.09.3.11.8. Activation of alkynyl glycosides
11.09.3.11.9. Consecutive addition using silyl cyanide
11.09.3.11.10. Direct chlorination of alcohols
11.09.3.11.11. Microwave-assisted reaction
11.09.3.11.12. Redox-active reactions
11.09.4. Preparation of organoindium complexes
11.09.5. Indium complexes in organic synthesis
11.09.5.1. Allylation
11.09.5.1.1. Addition to carbonyl compounds and its derivatives
11.09.5.1.1.1. Diastereoselective allylation reactions
11.09.5.1.1.2. Enantioselective allylation reactions
11.09.5.1.2. Allylation of imines
11.09.5.1.2.1. Allylation of imines and their derivatives
11.09.5.1.2.2. Diastereoselectivity in imines
11.09.5.1.2.3. Enantioselectivity in imines
11.09.5.2. Propargylation and allenylation reactions
11.09.5.3. Additions to alkenes and alkynes
11.09.5.4. Indium based carbo- and heterocyclization reactions
11.09.5.4.1. Carbocyclization
11.09.5.4.2. Heterocyclization of oxygen based functional groups
11.09.5.4.3. Heterocyclization of nitrogen based functional groups
11.09.5.5. Coupling reactions
11.09.5.6. Reduction reactions
11.09.5.6.1. Reduction of carbonyl compounds and their derivatives
11.09.5.6.2. Reduction of nitrogen-, oxygen- and other heteroatom containing functional groups
11.09.5.7. Annulation reactions
11.09.5.8. Cycloaddition reactions using indium(III) salts
11.09.5.9. Reactions involving transition metals and chalcogens
11.09.6. Miscellaneous reactions
11.09.6.1. Cycloisomerization reactions
11.09.6.2. Glycosylation reactions
11.09.6.3. Hydroarylation reactions
11.09.6.4. Silylation reactions
11.09.6.5. Redox-active reactions
11.09.7. Conclusion
Acknowledgment
References
11.10 Silicon and Germanium Complexes in Organic Synthesis
11.11 Tin and Lead in Organic Synthesis
11.11.1. Introduction
11.11.2. `Classical tin chemistry and toxicity
11.11.2.1. Progress regarding polymer-supported tin reagents
11.11.3. Progress in low-valent lead and tin chemistry
11.11.3.1. Tin(I) and lead(I) dimers (distannynes and diplumbynes)
11.11.3.1.1. Alkenes
11.11.3.1.2. Unsaturated nitrogen-nitrogen bonds
11.11.3.1.3. Isocyanides
11.11.3.1.4. Dihydrogen
11.11.3.2. Monomeric tin(II) and lead(II) species (stannylenes and plumbylenes)
11.11.3.2.1. Early work
11.11.3.2.2. Frontier orbitals
11.11.3.2.3. Oxidative addition and reductive elimination reactions of stannylenes and plumbylenes
11.11.3.2.4. Insertion reactions of stannylenes and plumbylenes
11.11.3.2.5. Catalysis promoted by stannylenes
11.11.3.3. Dimeric tin(II) and lead(II) species (distannenes and plumbenes)
11.11.3.3.1. Alkynes
11.11.3.3.2. Phosphalkynes
References
11.12 Antimony and Bismuth Complexes in Organic Synthesis
11.12.1. Introduction
11.12.2. Antimony in organic synthesis
11.12.2.1. Organoantimony(I) compounds
11.12.2.2. Organoantimony(II) compounds
11.12.2.3. Organoantimony(III) compounds
11.12.2.3.1. CC Bond forming reactions
11.12.2.3.1.1. Indole additions
11.12.2.3.1.2. Nucleophilic allylations
11.12.2.3.1.3. Friedel-crafts additions
11.12.2.3.1.4. Miscellaneous CC bond forming reactions
11.12.2.3.2. C-X bond forming reactions (X=O, N)
11.12.2.3.3. Reactions involving transition metals
11.12.2.3.4. Multicomponent reactions
11.12.2.3.5. Oxidations
11.12.2.3.6. Reductions
11.12.2.4. Organoantimony(V) compounds
11.12.2.4.1. CC bond forming reactions
11.12.2.4.2. C-X bond formation (X=O, N, S, P)
11.12.2.4.3. Oxidations
11.12.2.4.4. Reductions
11.12.3. Bismuth in organic synthesis
11.12.3.1. Organobismuth(I) compounds
11.12.3.2. Organobismuth(II) compounds
11.12.3.2.1. Ring opening
11.12.3.2.2. Olefin radical polymerization
11.12.3.2.3. Intramolecular CC coupling
11.12.3.2.4. Intermolecular CC coupling
11.12.3.3. Organobismuth(III) compounds
11.12.3.3.1. CC bond forming reactions
11.12.3.3.1.1. Intramolecular cyclizations
11.12.3.3.1.2. Mukaiyama-aldol reaction
11.12.3.3.1.3. Nucleophilic allylations
11.12.3.3.2. C-X (X=O, N, S) bond forming reactions
11.12.3.3.3. Reactions involving transition metals
11.12.3.3.4. Multi-component reactions
11.12.3.3.5. Oxidations
11.12.3.3.6. Reductions
11.12.3.4. Organobismuth(V) compounds
11.12.3.4.1. Stoichiometric C-C/N/O bond formation
11.12.3.4.2. Catalytic CC/N/O bond formation
Acknowledgment
References
11.13 Selenium and Tellurium Complexes in Organic Synthesis
11.13.1. General introduction
11.13.1.1. Electrophilic selenium and tellurium reagents
11.13.2. Nucleophilic selenium and tellurium reagents
11.13.2.1. Cadmium
11.13.2.2. Lanthanum
11.13.2.3. Indium
11.13.2.4. Samarium
11.13.2.5. Tin
11.13.2.6. Zinc
11.13.2.6.1. Synthesis and reactivity of [RSeZnSeR] generated by oxidative insertion of elemental zinc into the SeSe bond
11.13.2.6.1.1. Oxidative insertion catalyzed by Lewis acids
11.13.2.6.1.2. Oxidative insertion using a recyclable biphasic acidic system
11.13.2.6.2. Synthesis and reactivity of bench stable zinc selenolates (Santi's reagents)
11.13.3. New insights in organoselenium and organotellurium catalysts
11.13.4. Conclusion
References
11.14 Frustrated Lewis Pairs in Organic Synthesis
11.14.1. Introduction to frustrated Lewis pairs (FLPs)
11.14.2. FLP-mediated catalytic hydrogenation
11.14.2.1. Early examples of FLP-mediated hydrogenation
11.14.2.2. Substrates which are the Lewis Basic component of FLPs
11.14.3. Air and moisture stable frustrated Lewis pairs
11.14.4. Asymmetric catalysts
11.14.4.1. Enantioselective reduction of CN multiple bonds and silyl enols
11.14.4.2. Hydrosilylation
11.14.4.3. Asymmetric FLP-mediated hydrosilylation
11.14.5. Other FLP-mediated organic transformations
11.14.5.1. FLP-mediated hydroamination
11.14.5.2. FLP-mediated direct Mannich-type reactions
11.14.5.3. FLP-mediated C-H borylation
11.14.5.4. FLP-mediated cyclization reactions
11.14.6. Frustrated radical pairs in organic synthesis
11.14.6.1. FRP-mediated CC bond formations
11.14.7. Summary and outlook
References
11.15 Synergistic Effects of Multimetallic Main Group Complexes in Organic Synthesis
11.15.1. Introduction
11.15.2. General properties
11.15.2.1. Enhanced reactivity
11.15.2.2. Enhanced stability
11.15.2.3. Enhanced solubility
11.15.2.4. Cooperative activation
11.15.2.5. Structural templating
11.15.3. Nucleophilic addition reactions
11.15.4. Deprotonative metalation reactions
11.15.5. Catalytic enantioselective reactions
11.15.6. Catalytic hydroamination reactions
11.15.7. Catalytic hydroboration reactions
11.15.8. Catalytic hydrogenation reactions
11.15.9. Catalytic CC bond formation reactions
11.15.10. Conclusion and outlook
Acknowledgment
References
11.16 Main Group Complexes in Polymer Synthesis
11.16.1. Scope
11.16.2. Introduction
11.16.3. Ring opening polymerization
11.16.3.1. Mechanisms
11.16.3.1.1. Cationic ROP mechanism
11.16.3.1.2. Activated monomer mechanism
11.16.3.1.3. Coordination-insertion ROP mechanism
11.16.3.1.4. Nucleophilic activation mechanism
11.16.3.1.5. Anionic ROP
11.16.4. Polymers accessible by main group catalyzed ROP
11.16.4.1. Polymers derived from cyclic ethers and thioethers
11.16.4.1.1. Polyethers derived from epoxides, O(CH2CHR)
11.16.4.1.2. Higher polyethers derived from cyclic esters, O(CH2)n (n=3, 4)
11.16.4.1.3. Polymers derived from thioethers
11.16.4.2. Polymers derived from cyclic esters, thioesters, and amides
11.16.4.2.1. Polymers derived from lactones
11.16.4.2.1.1. Poly(lactic acid)
11.16.4.2.2. Polymers derived from thiolactones
11.16.4.2.3. Polymers derived from lactams
11.16.4.3. Polymers derived from cyclic carbonates and thiocarbonates
11.16.4.3.1. Polymers derived from cyclic carbonates
11.16.4.3.2. Polymers derived from cyclic thiocarbonates
11.16.5. Ring-opening copolymerization mediated by main group complexes
11.16.5.1. Epoxide/Anhydride ROCOP
11.16.5.2. Epoxide/Heterocumulene ROCOP
11.16.6. Chemical polymer recycling
11.16.6.1. Chemical depolymerization of PLA
11.16.6.2. Chemical degradation of PLA
11.16.6.3. Depolymerization of other polyesters
11.16.7. Conclusion
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Contents of Volume 12
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 12
Preface
Volume 12 and 13: Applications II. d- and f- Block Metal Complexes in Organic Synthesis
12.01.1. Introduction
CC Bond Formation Through Heck-Like Reactions
Nomenclature
12.02.1. Brief history
12.02.2. Heck reaction of aryl and alkenyl (pseudo)halides
12.02.2.1. Heck reaction of cyclic alkenes
12.02.2.2. Heck reaction of acyclic alkenes
12.02.2.3. Nickel-catalyzed Heck reaction
12.02.2.4. Synthetic applications
12.02.3. Heck-Matsuda reaction
12.02.3.1. Introduction
12.02.3.2. Arylation of cyclic olefins
12.02.3.3. Arylation of acyclic olefins
12.02.4. Heck-type reaction of unactivated alkyl electrophiles
12.02.4.1. Introduction
12.02.4.2. Pd-catalyzed thermal Heck-type alkylation
12.02.4.3. Pd-catalyzed photoinduced Heck-type alkylation
12.02.4.4. Cobalt- and nickel-catalyzed Heck-type alkylation
12.02.5. Heck-type alkylation of activated alkyl halides
12.02.6. Heck reaction of benzylic electrophiles
12.02.7. Heck reaction of allylic and propargylic electrophiles
12.02.7.1. Heck reaction of allylic electrophiles
12.02.7.2. Heck reaction of propargylic electrophiles
12.02.8. Narasaka-Heck reaction
12.02.9. Heck reaction of silyl electrophiles
12.02.10. Heck reaction of boryl electrophiles
12.02.11. Conclusion
Acknowledgment
References
Metal-Mediated Reductive C-C Coupling of π Bonds
12.03.1. Introduction
12.03.2. Lanthanides and group 3 metals
12.03.2.1. Stoichiometric reductive coupling of alkenes with aldehydes and ketones
12.03.2.2. Stoichiometric reductive coupling of aldehydes and ketones (pinacol type)
12.03.2.3. Catalytic reductive coupling of alkenes with ketones
12.03.3. Early-mid transition metals
12.03.3.1. Early transition metal-mediated examples
12.03.3.1.1. Stoichiometric early transition metal coupling of alkenes and alkynes
12.03.3.1.2. Stoichiometric couplings of π bonds with aldehydes, imines, ketones, and nitriles
12.03.3.2. Catalytic early transition metal coupling
12.03.3.3. Fe-catalyzed reductive cyclization
12.03.3.4. Ru-catalyzed reductive coupling
12.03.4. Late transition metals
12.03.4.1. Reductive coupling of alkynes and alkenes π bonds
12.03.4.1.1. Hydrosilylation/cyclization
12.03.4.1.2. Dihydrogenative reductive coupling
12.03.4.2. Reductive coupling of alkenes and alkynes with aldehydes and aldimines
12.03.4.2.1. Enantioselective synthesis on unactivated alkenes
12.03.4.2.2. Enantioselective synthesis using alkynes
12.03.4.2.3. Mild reductants
12.03.4.2.4. Tandem reactions
12.03.4.2.5. Miscellaneous noteworthy reactions
12.03.5. Photocatalytic reductive coupling with photoredox reagents
12.03.6. Conclusion
References
C-C Bond Formation Through Cross-Electrophile Coupling Reactions
12.04.1. Introduction
12.04.2. Proposed mechanisms of cross-electrophile coupling (XEC) reactions
12.04.3. XEC reactions employing stoichiometric reductants
12.04.3.1. Reactions of C(sp2) electrophiles (Type A)
12.04.3.1.1. Dimerization reactions of C(sp2) electrophiles
12.04.3.1.2. Cross-selective XEC reactions of C(sp2) electrophiles
12.04.3.2. XEC reactions of C(sp2) and C(sp3) electrophiles (Type B)
12.04.3.2.1. XEC reactions of aryl and vinyl electrophiles with C(sp3) electrophiles
12.04.3.2.2. XEC reactions of acyl electrophiles with C(sp3) electrophiles
12.04.3.2.3. Cyclization reactions of C(sp2) and C(sp3) electrophiles
12.04.3.3. XEC reactions of C(sp3) electrophiles (Type C)
12.04.3.3.1. Dimerization reactions of C(sp3) electrophiles
12.04.3.3.2. Cross-selective XEC reactions of C(sp3) electrophiles
12.04.3.3.3. XEC reactions of allylic trifluoromethyl electrophiles and C(sp3) electrophiles
12.04.3.3.4. Cyclization reactions of C(sp3) electrophiles
12.04.3.3.5. XEC reactions of C(sp) electrophiles (Type D)
12.04.4. XEC reactions employing electrochemical reductions
12.04.4.1. XEC reactions of C(sp2) electrophiles (Type A)
12.04.4.2. XEC reactions of C(sp2) and C(sp3) electrophiles (Type B)
12.04.4.3. XEC reactions of C(sp3) electrophiles (Type C)
12.04.5. XEC reactions in natural product syntheses
12.04.6. Closing remarks
Acknowledgment
References
CC Bond Formation Through C-H Activation
12.05.1. Introduction
12.05.2. Pd-catalyzed CH bond functionalization
12.05.2.1. CH bond arylation
12.05.2.1.1. C(sp2)H bond arylation with aryl halides and aryl organometallic reagents
12.05.2.1.2. C(sp2)H bond arylation with simple aromatic ring
12.05.2.1.3. meta-C(sp2)-H arylation
12.05.2.1.4. C(sp3)-H arylation
12.05.2.1.5. C-H arylation using transient directing group
12.05.2.1.6. Pd(0)-initiated C-H arylation
12.05.2.2. CH bond alkenylation
12.05.2.3. CH bond alkylation
12.05.2.4. CH bond alkynylation
12.05.2.5. Enantioselective C-H activation
12.05.2.6. Applications in organic synthesis
12.05.3. Rh-catalyzed CH bond functionalization
12.05.3.1. CH bond arylation
12.05.3.2. CH bond alkenylation
12.05.3.3. CH bond alkylation
12.05.3.4. CH bond alkynylation
12.05.3.5. CH bond annulation
12.05.3.6. Enantioselective C-H activation
12.05.3.7. Applications in organic synthesis
12.05.4. Concluding remarks
References
Direct C-E (E=Boron, Halogen, Oxygen) Bond Formation Through C-H Activation
12.06.1. Introduction
12.06.2. Metal-catalyzed CB bond formation
12.06.2.1. Ir-catalyzed CH borylation
12.06.2.1.1. Ir-catalyzed non-directed CH borylation
12.06.2.1.2. Ir-catalyzed directed CH borylation
12.06.2.2. Rh-catalyzed CH borylation
12.06.2.3. Pd-catalyzed CH borylation
12.06.2.4. Other metal catalyzed CH borylation
12.06.3. Metal-catalyzed C-X (X=cl, Br, I) bond formation
12.06.3.1. Pd-catalyzed CH halogenation
12.06.3.2. Rh-catalyzed CH halogenation
12.06.3.3. Cu-catalyzed CH halogenation
12.06.3.4. Other metal catalyzed CH halogenation
12.06.4. Metal-catalyzed CO bond formation
12.06.4.1. Pd-catalyzed CH oxygenation
12.06.4.1.1. Pd-catalyzed CH acetoxylation
12.06.4.1.2. Pd-catalyzed CH hydroxylation
12.06.4.1.3. Pd-catalyzed CH lactonization
12.06.4.2. Other metals catalyzed CO bond formation
12.06.5. Conclusion
Acknowledgment
References
Synthetic Applications of Carbene and Nitrene CH Insertion
12.07.1. Introduction
12.07.2. Intermolecular rhodium(II) catalyzed carbene CH insertion
12.07.2.1. Donor/acceptor carbenes
12.07.2.2. Early examples of Rh2(DOSP)4-catalyzed CH functionalization
12.07.2.3. Combined CH functionalization/Cope rearrangement
12.07.2.4. Catalyst-controlled CH functionalization
12.07.2.4.1. Overview of chiral dirhodium catalysts
12.07.2.4.2. Catalyst-controlled selective reactions at unactivated CH bonds
12.07.3. Intramolecular rhodium(II)-catalyzed carbene CH insertion
12.07.3.1. Asymmetric intramolecular carbene CH insertion reactions
12.07.4. Other metal catalysts for asymmetric carbene CH insertion reactions
12.07.4.1. Chiral copper catalysts for asymmetric carbene CH functionalization
12.07.4.2. Chiral rhodium catalysts for asymmetric carbene CH functionalization
12.07.4.3. Chiral ruthenium catalysts for asymmetric carbene CH functionalization
12.07.4.4. Chiral iridium catalysts for asymmetric carbene CH functionalization
12.07.4.5. Chiral cobalt catalyst for asymmetric carbene CH functionalization
12.07.5. Biocatalysts and metalloenzymes for asymmetric carbene CH insertion reactions
12.07.6. Nitrene CH insertion
12.07.6.1. Rhodium(II)-catalyzed nitrene CH insertion
12.07.6.1.1. Intramolecular nitrene CH insertion
12.07.6.1.2. Intermolecular nitrene CH insertion
12.07.6.1.3. Enantioselective CH amination
12.07.6.1.4. Applications in total synthesis
12.07.6.2. Manganese-catalyzed nitrene CH insertion
12.07.6.3. Ruthenium-catalyzed nitrene CH insertion
12.07.6.4. Copper-catalyzed nitrene CH insertion
12.07.6.5. Silver-catalyzed nitrene CH insertion
12.07.6.6. Gold-catalyzed CH amination
12.07.6.7. Cobalt-catalyzed nitrene CH insertion
12.07.6.8. Iron-catalyzed nitrene CH insertion
Acknowledgment
References
Metal-Catalyzed Amination: CN Bond Formation
12.08.1. Amination of aliphatic Csp3H bonds
12.08.1.1. Csp3H bond amination by catalyzed nitrene transfer reaction
12.08.1.1.1. Racemic nitrene transfer reactions
12.08.1.1.2. Enantioselective variants
12.08.1.2. Csp3H bond amination by SET photoredox catalysis and electrochemical oxidation
12.08.1.2.1. Intramolecular amination
12.08.1.2.2. Intermolecular amination
12.08.1.3. Csp3H bond amination by CH activation
12.08.1.3.1. Intramolecular amination
12.08.1.3.2. Intermolecular CH amination
12.08.2. Allylic amination for the construction of Csp3N bonds
12.08.2.1. Introduction
12.08.2.2. Asymmetric amination through allylic substitution
12.08.2.3. Amination of alkynes and allenes
12.08.2.3.1. Pd-catalyzed hydroamination of alkynes and allenes
12.08.2.3.2. Rh-catalyzed hydroamination of alkynes and allenes
12.08.2.3.3. Au-catalyzed hydroamination of alkynes and allenes
12.08.3. Vinylic Csp2N bond formation
12.08.3.1. Transition metal catalyzed hydroamination of alkynes
12.08.3.2. Vinylic amination by cross-coupling
12.08.4. Aromatic Csp2N bond formation
12.08.4.1. The Ullmann-Goldberg reaction
12.08.4.2. The Buchwald Hartwig amination
12.08.4.2.1. Bulky biarylphosphine ligands
12.08.4.2.2. Bisphosphine ligands
12.08.4.2.3. Ni-catalyzed Buchwald-Hartwig amination
12.08.4.3. The Chan-Lam amination
12.08.5. Conclusion
References
Synthetic Applications of CC Bond Activation Reactions
12.09.1. Introduction
12.09.2. C-C activation with (benzo)cyclobutenones in total synthesis
12.09.3. C-C activation with cyclobutanones in total synthesis
12.09.4. C-C activation with cyclobutanols and cyclopropanols in total synthesis
12.09.5. Conclusion
Acknowledgment
References
Synthetic Applications of C-O and C-E Bond Activation Reactions
12.10.1. Introduction
12.10.2. C-O bond activation
12.10.2.1. Overview
12.10.2.2. C(sp)-O bond activation
12.10.2.3. C(aryl)-O bond activation
12.10.2.3.1. Aryl esters and derivatives
12.10.2.3.2. Aryl ethers
12.10.2.3.3. Arenols
12.10.2.4. C(alkenyl)-O bond activation
12.10.2.5. C(acyl)-O bond activation
12.10.2.6. C(sp3)-O bond activation
12.10.3. C-S bond activation
12.10.3.1. Overview
12.10.3.2. C(sp)-S bond activation
12.10.3.3. C(sp2)-S bond activation
12.10.3.4. C(acyl)-S bond activation
12.10.3.5. C(sp3)-S bond activation
12.10.4. C-N bond activation
12.10.4.1. Overview
12.10.4.2. C(sp)-N bond activation
12.10.4.3. C(aryl)-N bond activation
12.10.4.3.1. The use of a directing group
12.10.4.3.2. No directing group
12.10.4.4. C(acyl)-N bond activation
12.10.4.5. C(sp3)-N bond activation
12.10.5. C-Si bond activation
12.10.5.1. Overview
12.10.5.2. C-Si bond activation of strained silacycles
12.10.5.3. C(sp3)-Si bond activation
12.10.5.4. C(sp2)-Si bond activation
12.10.5.5. C(sp)-Si bond activation
12.10.6. C-P bond activation
12.10.6.1. Overview
12.10.6.2. Phosphoniums
12.10.6.3. Phosphines
12.10.6.3.1. Intermolecular reactions
12.10.6.3.2. Intramolecular cyclizations
12.10.6.4. Phosphoric acid derivatives and phosphine oxides
12.10.7. Conclusion and outlook
References
CF Bond Activation Reactions
12.11.1. Introduction and overview
12.11.1.1. Introduction
12.11.1.2. Overview of C(sp3)F bond activation4,6,8,12-15,20,22
12.11.1.3. Overview of alkene C(sp2)F bond activation9,14,16,23
12.11.1.4. Overview of arene C(sp2)F bond activation2,3,7,10,11,23
12.11.2. Survey of C(sp3)F bond activation 2005-mid 2021
12.11.2.1. Activation of allylic CF bonds
12.11.2.1.1. SN2-type reaction
12.11.2.1.2. Lewis acid-assisted SN2-type reaction
12.11.2.1.3. SN1 reaction
12.11.2.1.4. Oxidative addition
12.11.2.1.5. Electron transfer
12.11.2.1.6. Addition-β-fluorine elimination
12.11.2.1.6.1. Insertion
12.11.2.1.6.2. Oxidative cyclization
12.11.2.1.6.3. Radical addition
12.11.2.2. Activation of propargylic CF bonds
12.11.2.2.1. Addition-β-fluorine elimination
12.11.2.3. Activation of benzylic CF bonds
12.11.2.3.1. Metalation (oxidative addition and electron transfer)
12.11.2.3.2. Fluoride abstraction
12.11.2.4. Activation of alkyl CF bonds
12.11.2.4.1. SN2 reaction
12.11.2.4.2. Addition-β-fluorine elimination
12.11.2.4.3. Fluoride abstraction
12.11.3. Survey of alkene C(sp2)F bond activation 2005-mid-2021
12.11.3.1. Activation of vinylic CF bonds
12.11.3.1.1. SNV reaction
12.11.3.1.2. Metalation (oxidative addition and electron transfer)
12.11.3.1.3. Addition-β-fluorine elimination
12.11.3.1.3.1. Insertion
12.11.3.1.3.2. Carbo(hetero)metalation
12.11.3.1.3.3. Oxidative cyclization
12.11.3.1.3.4. Radical addition
12.11.3.1.4. Addition-α-fluorine elimination
12.11.3.2. Activation of allenylic CF bonds
12.11.3.2.1. Fluoride abstraction
12.11.3.3. Activation of acyl CF bonds
12.11.3.3.1. Carbonyl-retentive coupling
12.11.3.3.2. Decarbonylative coupling
12.11.4. Survey of arene C(sp2)F bond activation 2005-mid-2021
12.11.4.1. Activation of aromatic CF bonds (1): Directed systems
12.11.4.1.1. Metalation
12.11.4.1.2. CC and CX bond formation
12.11.4.1.2.1. Alkylation and alkoxylation
12.11.4.1.2.2. Arylation, alkenylation, and borylation
12.11.4.1.2.3. CF/CH coupling
12.11.4.1.2.4. Insertion
12.11.4.2. Activation of aromatic CF bonds (2): Nondirected systems with multiple fluorine atoms
12.11.4.2.1. Metalation
12.11.4.2.1.1. SNAr-like metalation (type A)
12.11.4.2.1.2. Ligand-assisted metalation (type B)
12.11.4.2.1.3. Oxidative addition (type C)
12.11.4.2.2. CC and CX bond formation
12.11.4.2.2.1. Alkylation and alkynylation
12.11.4.2.2.2. Arylation
12.11.4.2.2.3. Borylation
12.11.4.2.2.4. Miscellaneous
12.11.4.3. Activation of aromatic CF bonds (3): Nondirected systems with one fluorine atom
12.11.4.3.1. Metalation
12.11.4.3.2. CC and CX bond formation
12.11.4.3.2.1. Activated monofluoroarenes
12.11.4.3.2.2. Nonactivated monofluoroarenes
12.11.4.4. Activation of aromatic CF bonds (4): Miscellaneous
12.11.4.4.1. Carbene analog insertion
12.11.4.4.2. Aryne formation
12.11.4.4.3. SNAr reaction
12.11.4.4.4. Fluoride abstraction
12.11.5. Conclusions and perspectives
References
Polymerization Reactions via Cross Coupling
Nomenclature
Polymers
Metal catalysts
Ancillary ligands
Solvents
Miscellaneous reagents and terms
12.12.1. Introduction
12.12.1.1. Electrophilic and nucleophilic reactive groups
12.12.2. Organomagnesium, organozinc, and organolithium coupling (Kumada-Tamao, Negishi, and Murahashi reactions)
12.12.2.1. General considerations
12.12.2.2. Chain-growth polymerization
12.12.2.2.1. Ligands and catalysts for chain-growth polymerization
12.12.2.2.2. Recent developments in chain-growth polymerization
12.12.2.3. Murahashi coupling
12.12.3. Organotin coupling (Stille-Migita-Kosuke reaction)
12.12.3.1. General considerations
12.12.3.2. AA/BB type coupling of organotin monomers
12.12.3.3. Recent developments in vinylene-based conjugated polymers
12.12.3.4. Polymerization of AB monomers
12.12.4. Organosilicon coupling (Hiyama-Denmark-Ito reaction)
12.12.5. Organoboron coupling (Suzuki-Miyaura reaction)
12.12.5.1. General considerations
12.12.5.2. Boron substituents
12.12.5.3. Polyphenylene derivatives synthesized from AA/BB monomers
12.12.5.4. Masked boronic acids in Suzuki-Miyaura cross-coupling polymerization
12.12.5.5. Chain-growth polymerization
12.12.6. Direct arylation polymerization (CH activation)
12.12.6.1. General considerations
12.12.6.2. Selected examples of DArP
12.12.6.3. Chain-growth polymerization
12.12.7. Oxidative coupling (CH activation)
12.12.7.1. General considerations
12.12.7.2. Glaser-Hay coupling
12.12.7.3. Oxidative polymerization of thiophene derivatives
12.12.8. Dehalogenative coupling (Yamamoto reaction)
12.12.9. Alkene coupling (Mizoroki-Heck reaction)
12.12.9.1. General considerations
12.12.9.2. Polymers synthesized via Mizoroki-Heck polycondensation
12.12.10. Alkyne coupling (Sonogashira-Hagihara reaction)
12.12.10.1. General considerations
12.12.10.2. Typical synthetic approach to PAEs
12.12.10.3. PAE variants synthesized using Sonogashira-Hagihara polymerization
12.12.10.4. Chain-growth polymerization for PAEs
12.12.11. Amine coupling (Buchwald-Hartwig amination reaction)
12.12.11.1. General considerations
12.12.11.2. AA/BB and AB approaches to polyarylamines
12.12.11.3. Dehalogenative polymerization to synthesize polyanilines
12.12.11.4. Polyanilines prepared by chain-growth polymerization
12.12.12. Conclusions
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Contents of volume 13
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 13
Preface
Phosphine Ligand Development for Homogeneous Asymmetric Hydrogenation
13.01.1. Introduction
13.01.2. Developing chiral phosphine ligands for olefin hydrogenation
13.01.2.1. Functionalized olefin hydrogenation with Rh based catalyst
13.01.2.1.1. History of developing chiral bisphosphine in Rh catalyst development
13.01.2.1.2. Empirical ligand design in Rh catalyst development-Quadrant rule
13.01.2.1.3. Empirical ligand design in Rh catalyst development-Backbone rigidity
13.01.2.1.4. Mechanistic studies of Rh-catalyzed hydrogenation of functionalized alkenes
13.01.2.2. Functionalized olefin hydrogenation with Ru-based catalysts
13.01.2.2.1. Developing BINAP for Rh-catalyzed olefin hydrogenation
13.01.2.2.2. BINAP in Ru-catalyzed olefin hydrogenation
13.01.2.3. Unfunctionalized olefin hydrogenation with Ir based catalyst
13.01.2.4. Olefin hydrogenation with Co based catalyst
13.01.2.5. Olefin hydrogenation with Ni based catalyst
13.01.3. Developing chiral phosphine ligands for ketone hydrogenation
13.01.3.1. Ketone hydrogenation with Ru based catalysts
13.01.3.1.1. Development of the BINAP-Ru catalyst for ketone hydrogenation
13.01.3.1.2. Developing multidentate ligands for Ru-catalyzed transfer hydrogenation
13.01.3.1.3. Developing pincer ligands for Ru-catalyzed ketone hydrogenation
13.01.3.2. Ketone hydrogenation with Ir based catalysts
13.01.3.3. Ketone hydrogenation with Fe based catalysts
13.01.3.3.1. Ketone transfer hydrogenation with Fe based catalysts
13.01.3.3.2. Ketone direct hydrogenation with Fe based catalyst
13.01.3.4. Ketone hydrogenation with Mn based catalysts
13.01.4. Conclusions and future directions
References
Hydrometallation of Organometallic Complexes
13.02.1. Nickel
13.02.1.1. Ni-catalyzed hydrogenation
13.02.1.2. Ni-catalyzed hydrosilylation, hydroboration and hydroalumination
13.02.1.3. Ni-catalyzed hydrovinylation
13.02.1.4. Ni-catalyzed carbon-hydrogen functionalization
13.02.1.5. Ni-catalyzed hydrocarbonation
13.02.2. Copper
13.02.2.1. Cu-H catalyzed hydroamination
13.02.2.2. Cu-H catalyzed hydroalkylation
13.02.2.3. Cu-H catalyzed hydrosilylation and hydroboration
13.02.2.4. Cu-H catalyzed hydrocarbonylation
13.02.3. Cobalt
13.02.3.1. Co-catalyzed hydrosilylation
13.02.3.2. Co-catalyzed hydrogenation
13.02.3.3. Co-catalyzed isomerization of alkenes
Acknowledgment
References
Metal-Catalyzed Aerobic Oxidation Reactions
13.03.1. Introduction
13.03.2. Oxygenation reactions
13.03.2.1. Cobalt catalysts for oxygenation reactions
13.03.2.1.1. Alkane oxygenation
13.03.2.1.2. Phenol oxygenation
13.03.2.2. Copper catalysts for oxygenation reactions
13.03.2.2.1. Alkane oxygenation
13.03.2.2.2. Phenol oxygenation
13.03.2.3. Other catalysts for oxygenation reactions
13.03.2.3.1. Alkane oxygenation
13.03.2.3.2. Arene oxygenation
13.03.3. Dehydrogenation reactions
13.03.3.1. Palladium catalysts for dehydrogenation reactions
13.03.3.1.1. Basic mechanistic considerations
13.03.3.1.2. Alcohol oxidation
13.03.3.1.3. Amine oxidation
13.03.3.1.4. Alkane dehydrogenation
13.03.3.2. Copper catalysts for dehydrogenation reactions
13.03.3.2.1. Alcohol oxidation
13.03.3.2.2. Amine dehydrogenation
13.03.3.3. Other catalysts for dehydrogenation reactions
13.03.3.3.1. Alcohol oxidation
13.03.3.3.2. Amine oxidation
13.03.4. Dehydrogenative coupling reactions
13.03.4.1. Palladium catalysts for dehydrogenative coupling reactions
13.03.4.1.1. Oxidative couplings of alkenes
13.03.4.1.2. Oxidative couplings of arenes
13.03.4.1.3. Allylic functionalization
13.03.4.2. Copper catalysts for dehydrogenative coupling reactions
13.03.4.2.1. Oxidative coupling of arenes
13.03.4.2.2. Oxidative coupling of alkanes
13.03.4.3. Other catalysts for dehydrogenative coupling reactions
13.03.4.3.1. Alkene and alkyne oxidation and oxidative coupling
13.03.4.3.2. Arene coupling
13.03.5. Conclusions
References
Metal-Mediated and Catalyzed Difunctionalization of Unsaturated Organics
13.04.1. Introduction
13.04.2. Dicarbofunctionalization
13.04.2.1. Overview
13.04.2.2. Dicarbofunctionalization of alkynes
13.04.2.3. Dicarbofunctionalization of allenes
13.04.2.4. Dicarbofunctionalization of 1,3-dienes
13.04.2.5. Dicarbofunctionalization of alkenes
13.04.3. Diamination
13.04.3.1. Overview
13.04.3.2. Diamination of alkenes
13.04.3.3. Diamination of 1,3-dienes
13.04.3.4. Diamination of alkynes
13.04.3.5. Diamination of allenes
13.04.4. Dioxygenation
13.04.4.1. Overview
13.04.4.2. Alkyne dioxygenation
13.04.4.3. Dioxygenation of allenes
13.04.4.4. Dioxygenation of 1,3-dienes
13.04.4.5. Dioxygenation of alkenes
13.04.4.5.1. Syn-dioxygenation of alkenes
13.04.4.5.2. Anti-dioxygenation of alkenes
13.04.5. Homo/heterodihalogenation reactions
13.04.5.1. Overview
13.04.5.2. Homo/heterodihalogenation of alkenes
13.04.5.3. Homo/heterodihalogenation of allenes
13.04.5.4. Homo/heterodihalogenation of alkynes
13.04.6. Aminooxygenation
13.04.6.1. Aminooxygenation of alkenes
13.04.6.1.1. Palladium-catalyzed
13.04.6.1.2. Rhodium-catalyzed
13.04.6.1.3. Copper-catalyzed
13.04.6.1.3.1. Radical mediated aminocyclization
13.04.6.1.3.2. Aziridine-based aminooxygenation
13.04.6.1.3.3. Intermolecular aminooxygenation
13.04.6.1.3.4. Oxycyclization
13.04.6.1.4. Platinum-catalyzed
13.04.6.1.5. Iron-catalyzed
13.04.6.1.6. Gold-catalyzed
13.04.6.1.7. Manganese-catalyzed
13.04.6.1.8. Iridium-catalyzed
13.04.6.2. Aminooxygenation of alkynes
13.04.6.2.1. Ruthenium-catalyzed
13.04.6.2.2. Gold-catalyzed
13.04.6.2.3. Copper-catalyzed
13.04.6.2.4. Iron-catalyzed
13.04.6.3. Aminooxygenation of allenes
13.04.6.3.1. Rhodium-catalyzed
13.04.6.3.2. Copper-mediated
13.04.7. Carboamination
13.04.7.1. Carboamination of alkynes
13.04.7.2. Carboamination of allenes
13.04.7.3. Carboamination of 1,3-butadienes
13.04.7.4. Carboamination of alkenes
13.04.8. Carbohalogenation
13.04.8.1. Carbohalogenation via reductive elimination from Pd(II)
13.04.8.2. Carbohalogenation via reductive elimination from high valent metals
13.04.8.3. Carbohalogenation via nickel catalysis
13.04.9. Aminohalogenation
13.04.9.1. Aminohalogenation via palladium catalysis
13.04.9.2. Iron-catalyzed aminohalogenation
13.04.9.3. Aminohalogenation via gold catalysis
13.04.9.4. Aminohalogenation via high-valent copper catalysis
13.04.10. Oxyhalogenation
13.04.11. Carbooxygenation
13.04.11.1. Palladium-catalyzed
13.04.11.2. Gold-catalyzed
13.04.12. Conclusion and outlook
Acknowledgment
References
Hydroformylation: Alternatives to Rh and Syn-gas
13.05.1. Introduction
13.05.2. Monometallic hydroformylation with syn-gas
13.05.2.1. Brief introduction of rhodium catalysts
13.05.2.2. Alternative metal catalysts
13.05.2.2.1. Cobalt catalysts
13.05.2.2.2. Ruthenium catalysts
13.05.2.2.3. Iron catalysts
13.05.3. Metal catalyzed hydroformylation with syn-gas surrogates
13.05.3.1. Carbon dioxide
13.05.3.2. Alcohol
13.05.3.3. Aldehyde
13.05.3.3.1. Formaldehyde
13.05.3.3.2. Transfer hydroformylation
13.05.3.4. Formic acid
13.05.4. Bimetallic hydroformylation
13.05.5. Asymmetric hydroformylation
13.05.6. Applications of hydroformylation
13.05.6.1. Tandem hydroformylation
13.05.6.2. Hydroformylation in natural product synthesis
13.05.6.3. Heterogeneous hydroformylation
13.05.6.3.1. Inorganic oxides
13.05.6.3.2. Transition metal modified zeolite catalyst system
13.05.6.3.3. Single atom catalysts for hydroformylation
13.05.7. Summary
References
Reactions of Ylides Generated from MC Bonds
13.06.1. Introduction
13.06.2. Formation of oxygen ylide from metal carbene complexes and subsequent reactions
13.06.2.1. [2,3]-Sigmatropic rearrangements
13.06.2.2. [1,2]-Stevens rearrangement
13.06.2.3. Trapping of the oxonium ylide
13.06.2.4. Miscellaneous reactions of oxonium ylides
13.06.2.5. 1,3-Dipolar cycloaddition of carbonyl ylide
13.06.3. Formation of sulfur ylide from metal carbene complexes and subsequent reactions
13.06.3.1. [2,3]-Sigmatropic rearrangements
13.06.3.2. [1,2]-Stevens rearrangement
13.06.3.3. S-H insertion
13.06.3.4. Trapping of the sulfonium ylide
13.06.3.4.1. Electrophilic trapping of the sulfonium ylide
13.06.3.4.2. Nucleophilic trapping of the sulfonium ylide
13.06.3.4.3. Miscellaneous applications of sulfonium ylides
13.06.3.5. 1,3-Dipolar cycloadditions of thiocarbonyl ylide
13.06.4. Formation of nitrogen ylide from metal carbene complexes and subsequent reactions
13.06.4.1. [2,3]-Sigmatropic rearrangements
13.06.4.2. [1,2]-Stevens rearrangement
13.06.4.3. Formal N-H insertions through ammonium ylide
13.06.4.4. Trapping of the ammonium ylide
13.06.4.5. The reaction of azirinium ylide and pyrazolium ylide
13.06.4.6. 1,3-Dipolar cycloadditions of azomethine and pyridinium ylide
13.06.5. Ylide generation from other heteroatoms and subsequent reactions
13.06.6. Reaction of metal complexed nitrene with Lewis base
13.06.7. Conclusion
References
E vs Z Selectivity in Olefin Metathesis Through Catalyst Design
13.07.1. Introduction
13.07.1.1. Olefin metathesis
13.07.1.2. Alkene stereoselectivity in olefin metathesis
13.07.2. Catalyst design
13.07.2.1. Mo and W catalysts
13.07.2.1.1. Early studies with Mo bisalkoxide complexes
13.07.2.1.2. Early studies with Mo diolate catalysts
13.07.2.1.3. Mo and W monoaryloxide pyrrolide (MAP) complexes
13.07.2.1.3.1. Catalyst design and mechanism
13.07.2.1.3.2. Molybdacyclobutane and tungstacyclobutane MAP complexes
13.07.2.1.3.3. W oxo MAP catalysts
13.07.2.1.3.4. Cross metathesis with Mo and W MAP catalysts
13.07.2.1.3.5. Z-selective macrocyclic ring-closing metathesis
13.07.2.1.3.6. Ethenolysis catalyzed by Mo and W MAP catalysts
13.07.2.1.3.7. Ring-opening cross metathesis
13.07.2.1.3.8. Tacticity and E/Z-stereoselectivity in ROMP with MAP catalysts
13.07.2.1.4. Stereoretentive Mo catalysts
13.07.2.1.5. Mo and W NHC Imido Alkylidenes
13.07.2.2. Ru catalysts
13.07.2.2.1. Early discovery: cis selectivity in alternating copolymerization
13.07.2.2.2. Cyclometalated Z-selective Ru catalysts
13.07.2.2.2.1. Catalyst structure and mechanism
13.07.2.2.2.2. Cross metathesis with Z-selective cyclometalated Ru catalysts
13.07.2.2.2.3. Ethenolysis with Z-selective cyclometalated Ru catalysts
13.07.2.2.2.4. Ring-closing metathesis with Z-selective cyclometalated Ru catalysts
13.07.2.2.2.5. Ring-opening cross metathesis with Z-selective cyclometalated Ru catalysts
13.07.2.2.2.6. Ring-opening metathesis polymerization with Z-selective cyclometalated Ru catalysts
13.07.2.2.3. Monothiolate catalysts
13.07.2.2.4. Stereoretentive dithiolate catalysts
13.07.2.2.4.1. Initial catalyst design and structural modifications
13.07.2.2.4.2. Mechanism and stereoretention
13.07.2.2.4.3. E selectivity
13.07.2.2.4.4. Methylene capping strategy
13.07.2.2.4.5. Stereoretentive ring-opening metathesis polymerization
13.07.3. Summary
Acknowledgment
References
Single-Electron Strategies in Organometallic Methods: Photoredox, Electrocatalysis, Radical Relay, and Beyond
13.08.1. Introduction
13.08.2. Single-electron strategy by photoredox catalysis
13.08.2.1. Photoredox palladium catalysis
13.08.2.2. Photoredox copper catalysis
13.08.2.3. Photoredox nickel catalysis
13.08.2.4. Photoredox catalysis with other metals
13.08.3. Single-electron strategy by electrocatalysis
13.08.3.1. Electrochemical manganese catalysis
13.08.3.2. Electrochemical copper catalysis
13.08.3.3. Electrochemical nickel catalysis
13.08.3.4. Electrochemical cobalt catalysis
13.08.4. Radical relay in metal catalysis
13.08.4.1. Net-oxidizing reaction
13.08.4.2. Net-reducing reaction
13.08.4.3. Redox-neutral reaction
13.08.5. Oxidatively induced reductive elimination
13.08.6. Conclusion and perspective
References
Transition Metal-Catalyzed Copolymerization of Olefins With Polar Functional Monomers
13.09.1. Introduction
13.09.2. Mechanism and ``polar monomer problem´´ for transition-metal-catalyzed olefin copolymerization
13.09.3. Early transition metal-catalyzed copolymerization of ethylene with polar monomers
13.09.3.1. Rare-earth catalysts
13.09.3.2. Group IV catalysts
13.09.4. Late transition metal catalyzed copolymerization of ethylene with polar functionalized olefins
13.09.4.1. α-Diimine catalysts (Brookhart-type)
13.09.4.2. Phosphine-sulfonate catalysts (Drent-type)
13.09.4.3. Catalysts beyond Brookhart and Drent systems
13.09.5. Transition metal catalyzed-copolymerization of propylene with polar monomers
13.09.5.1. Group IV catalysts
13.09.5.2. Ni and Pd catalysts
13.09.6. Copolymerization of other alkenes (styrene, dienes) with polar monomers
13.09.7. Conclusions
References
Polymerization of Epoxides
13.10.1. Introduction
13.10.2. Homopolymerization of epoxides
13.10.2.1. Mechanistic aspects
13.10.2.1.1. Ionic polymerizations
13.10.2.1.1.1. Cationic initiators
13.10.2.1.1.2. Anionic initiators
13.10.2.2. Catalysts for epoxide polymerization
13.10.3. Alternating copolymerization of epoxides and carbon monoxide
13.10.3.1. Catalysts for the coupling of epoxides and CO to poly(3-hydroxyalkanoate)s
13.10.3.2. Mechanistic aspects of epoxide/CO polymerization reactions
13.10.4. Alternating copolymerization of epoxides and carbon dioxide
13.10.4.1. Mechanistic aspects of CO2/epoxide copolymerization processes
13.10.4.2. Improvement in catalysts
13.10.4.2.1. Mono-metallic catalysts
13.10.4.2.2. Bimetallic catalysts
13.10.4.2.3. Organocatalysts
13.10.5. Block copolymers of epoxides/CO2 and other monomers
13.10.5.1. Sequential monomer addition
13.10.5.2. Chain-transfer polymerization
13.10.5.3. Kinetic controlled polymerization
13.10.6. Alternating copolymerization of epoxides and anhydrides
13.10.7. Alternating copolymerization of epoxides and COS or CS2
13.10.7.1. Epoxides and CS2
13.10.7.2. Epoxide and COS
13.10.8. Conclusions and outlook
References
Reaction Parameterization as a Tool for Development in Organometallic Catalysis
13.11.1. Introduction
13.11.2. Conventional ligand classification
13.11.3. Quantifying ligand electronic properties
13.11.3.1. Tolman electronic parameter (TEP)
13.11.3.2. Ligand electrochemical parameter (LEP)
13.11.3.3. Computed electronic parameter (CEP), molecular electrostatic potential (MESP) and metal-ligand electronic para ...
13.11.3.4. Huynh electronic parameter (HEP)
13.11.3.5. NMR spectroscopy of selenoureas or carbene-phosphinidene adducts and 1J(C-H) coupling constants of azolium salts
13.11.4. Descriptors for ligand steric properties
13.11.4.1. Tolman cone angle and the bite angle
13.11.4.2. Percent buried volume
13.11.4.3. Topographic steric maps
13.11.5. Analysis of catalyst performance based on parameterization of ancillary ligands
13.11.5.1. Catalytic trends of transition metal complexes bearing monodentate phosphines
13.11.5.2. Parameterization of transition metal complexes bearing monodentate phosphines
13.11.5.3. Catalytic trends of transition metal complexes bearing diphosphines
13.11.5.4. Parameterization of transition metal complexes bearing diphosphines
13.11.5.5. Catalytic trends of transition metal complexes bearing NHC ligands
13.11.5.6. Catalytic trends of transition metal complexes bearing other ligands
13.11.5.7. Parameterization of transition metal complexes bearing other ligands
Acknowledgment
References
High-Throughput Experimentation in Organometallic Chemistry and Catalysis
13.12.1. Introduction
13.12.1.1. Purpose and scope of this chapter
13.12.1.2. Additional reviews and resources
13.12.2. Tools and techniques
13.12.2.1. Experimental design
13.12.2.2. Array set up and dispensing
13.12.2.3. Reaction execution
13.12.2.4. High-throughput analysis
13.12.2.5. Data interrogation
13.12.3. Specific applications in catalysis
13.12.3.1. CH bond formation: Asymmetric hydrogenation
13.12.3.2. CC bond formation: Suzuki-Miyaura cross-coupling
13.12.3.3. CC bond formation: Negishi and Kumada-Corriu couplings
13.12.3.4. CC bond formation: Cross-electrophile couplings
13.12.3.5. CC bond formation: Mizoroki-Heck coupling
13.12.3.6. CC bond formation: Sonogashira coupling
13.12.3.7. CC bond formation: C-H arylation
13.12.3.8. CC bond formation: Allylation
13.12.3.9. CC bond formation: Carbonylative coupling
13.12.3.10. CC bond formation: Alkene metathesis
13.12.3.11. CC bond formation: Alkene polymerization and selective oligomerization
13.12.3.12. CC bond formation: Other reactions
13.12.3.13. CN bond formation: Buchwald-Hartwig and Ullmann-Goldberg coupling
13.12.3.14. CN bond formation: Chan-Lam and other oxidative couplings
13.12.3.15. CN bond formation: Hydroamination
13.12.3.16. CN bond formation: Other reactions
13.12.3.17. CO bond formation: Hydroxylation/etherification
13.12.3.18. CO bond formation: Other reactions
13.12.3.19. CB bond formation: Miyaura borylation
13.12.3.20. CB bond formation: C-H borylation
13.12.3.21. Other reactions
13.12.4. Conclusions and future trends
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Contents of volume 14
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 14
Preface
Applications III. Materials Science, Nanoscience, Polymer Science and Surface Chemistry
Ferrocene and Related Metallocene Polymers
14.02.1. Introduction
14.02.2. Ferrocene-based polymers
14.02.3. Ruthenocene-based polymers
14.02.4. Cobaltocene-based polymers
14.02.5. Nickelocene-based polymers
14.02.6. Arenocene-based polymers
14.02.7. Summary
Acknowledgment
References
Conjugated Poly(metalla-ynes)
14.03.1. Preamble
14.03.2. Synthesis of poly(metalla-ynes)
14.03.3. Structure-property relationship
14.03.3.1. Pt(II)-based poly(metalla-ynes)
14.03.3.1.1. Pt(II)-based poly(metalla-ynes) incorporating phenylene, fluorene and carbazole spacers
14.03.3.1.2. Pt(II)-based poly(metalla-ynes) incorporating thiophene and related spacers
14.03.3.1.3. Pt(II)-based poly(metalla-ynes) incorporating pyridine and related spacers
14.03.3.1.4. Pt(II)-based poly(metalla-ynes) incorporating hybrid spacers
14.03.4. Non-platinum poly(metalla-ynes)
14.03.5. Applications
14.03.5.1. Optoelectronics
14.03.5.1.1. Bulk heterojunction polymer solar cells (PSCs)
14.03.5.1.1.1. Development of Pt(II) poly-ynes for solar cell applications
14.03.5.1.1.2. Structural modifications on donor-acceptor unit
14.03.5.1.1.2.1. Change of the number of thienyl rings
14.03.5.1.1.2.2. Pt(II) poly-ynes with multi-dimensionality
14.03.5.1.1.3. Development of Hg(II) poly-ynes for solar cells
14.03.5.1.1.4. Development of metalloporphyrin-based poly-ynes
14.03.5.1.2. Organic light-emitting diodes (OLEDs)
14.03.5.1.3. Organic field-effect transistors (OFETs)
14.03.5.1.4. Non-linear optics (NLO)
14.03.5.1.4.1. Homometallic poly-ynes
14.03.5.1.4.2. Heterometallic poly-ynes
14.03.5.2. Sensors
14.03.5.3. Other devices
14.03.5.3.1. Memory devices
14.03.5.3.2. Catalysts
14.03.5.3.3. Biologically active compounds
14.03.6. Summary
Acknowledgment
References
Organoboron and Related Group 13 Polymers
14.04.1. Introduction
14.04.2. Boron in the main chain: Inorganic-organic hybrid polymers
14.04.2.1. Tricoordinate boron in the backbone of π-conjugated polymers
14.04.2.1.1. Polymers with boron incorporated in the main chain exclusively via B-C linkages
14.04.2.1.2. Polymers with B-N linkages in the main chain
14.04.2.1.3. Polymers with B-O linkages in the main chain
14.04.2.2. Tetracoordinate boron in the polymer backbone
14.04.2.2.1. Coordination polymers with linear dative BN bonds in the main chain
14.04.2.2.2. Polymers with boron chelate complexes in the main chain
14.04.3. Boron in polymer side chains: Organic-inorganic hybrid polymers
14.04.3.1. Triorganoborane groups in side chains of π-conjugated polymers
14.04.3.2. Tetracoordinate boron chelate complexes in polymer side chains
14.04.4. Inorganic polymers comprising (BN)n or (BP)n chains
14.04.5. Heavier group 13 element-containing hybrid polymers
14.04.5.1. Tetra- and pentacoordinate gallium in the main chain of conjugated polymers
14.04.5.2. Organoaluminum-, organogallium-, and organoindium-bridged polymetallocenes
14.04.6. Conclusions
Acknowledgment
References
Organosilicon and Related Group 14 Polymers
14.05.1. Introduction
14.05.2. General information
14.05.2.1. Overview of synthetic methods
14.05.2.2. Structure of classical polymers
14.05.2.3. Geometry and conformation
14.05.3. Polysilanes
14.05.3.1. Wurtz polymerization
14.05.3.1.1. Mechanism
14.05.3.1.2. Variations
14.05.3.1.3. Novel monomers
14.05.3.2. Dehydropolymerization
14.05.3.2.1. Early transition metals
14.05.3.2.2. Late transition metals
14.05.3.2.2.1. Group 9 catalysts (Rh, Ir)
14.05.3.2.2.2. Group 10 catalysts (Ni, Pd)
14.05.3.3. Other synthetic methods
14.05.3.4. Postpolymerization functionalization
14.05.3.4.1. SiH functionalization
14.05.3.4.2. Polysilane deprotection and functionalization
14.05.3.4.3. Miscellaneous postfunctionalization
14.05.4. Polygermanes
14.05.5. Polystannanes
14.05.5.1. Wurtz polymerization
14.05.5.2. Dehydropolymerization
14.05.5.3. Additional approaches
14.05.6. Conclusions
Acknowledgment
References
Organophosphorus and Related Group 15 Polymers
List of Abbreviations
14.06.1. Introduction
14.06.1.1. Organophosphorus motifs found in polymers
14.06.1.1.1. Phosphines
14.06.1.1.2. Phosphine oxides
14.06.1.1.3. Phosphonium salts
14.06.1.1.4. 1-H-Phospholes
14.06.1.1.5. Low valent and low coordinate P-environments
14.06.1.1.6. Properties introduced by pnictogens heavier than phosphorus
14.06.2. Synthesis of polymers where the PC bond is not established in the polymer forming step
14.06.2.1. Oxidative polymerization-Electropolymerization
14.06.2.2. Polymerization using cross-coupling protocols
14.06.2.2.1. Suzuki-Miyaura coupling protocols
14.06.2.2.2. Stille-coupling protocols
14.06.2.2.3. Heck coupling protocols
14.06.2.2.4. Sonogashira-coupling protocols
14.06.2.2.5. Direct aryl-aryl and aryl-alkyl coupling
14.06.2.3. Polymerization based on carbon-heteroelement (not PC) bond formation
14.06.2.3.1. CO bond formation
14.06.2.3.2. Metallacycle-formation followed by metal-pnictogen exchange
14.06.2.3.3. Other CE bond forming reaction including CN and NN bond formations
14.06.2.4. Radical polymerizations
14.06.2.4.1. Polystyrene-type polymers
14.06.2.4.2. RAFT polymerizations
14.06.2.5. Living (anionic/cationic) polymerization
14.06.2.6. Coordination polymers and metal organic frameworks
14.06.2.6.1. Reaction at the pnictogen centers in the coordination polymer formation
14.06.2.6.2. Pnictogen centers as secondary sites of the coordination polymer
14.06.3. Synthesis of polymers where the pnictogen-carbon (pnictogen) formation is part of the polymerization
14.06.3.1. Introduction of simple pnictogen ``node´´ in a formal trimolecular polymerization
14.06.3.2. Condensation of two AA/BB monomers
14.06.3.3. Homo-polymerization of an AB-type monomer
14.06.3.4. Ring opening polymerization of pnictogen heterocycles
14.06.4. Properties and applications of organopnictogen polymers
14.06.4.1. Properties of pnictogen containing polymers and framework materials
14.06.4.1.1. Interactions with analytes/guest molecules
14.06.4.1.2. Ion/charge transport properties
14.06.4.1.3. Optical and electronic properties
14.06.4.2. Opto-electronic devices containing organopnictogen polymers
14.06.4.2.1. Phosphine oxide containing polymers as host materials
14.06.4.2.2. Phosphole-containing polymers for emitters in organic light emitting diodes
14.06.4.2.3. Dithienoarsole-polymer in organic field effect transistors (OFETs)
14.06.4.2.4. Organopnictogen polymers in photovoltaic applications
14.06.4.3. Polymers with controlled charring/high temperature behavior
14.06.4.3.1. Ceramics precursors
14.06.4.3.2. Organophosphorus materials as flame retardants
14.06.4.4. Biological and medicinal applications
14.06.4.4.1. Biocidal, antimicrobial and antifouling properties
14.06.4.4.2. Gene delivery and imaging
14.06.4.4.3. Cellular imaging
14.06.4.5. Polymers and framework materials for catalytic applications
14.06.4.5.1. Hydrogenation, hydro-silylation, -formylation, and hydrogen evolution catalysis
14.06.4.5.2. Carbon-carbon cross coupling reactions
14.06.4.5.3. Solid-state reactions using immobilized phosphine derivatives and catalyst sequestration, scavenging
14.06.5. Concluding remarks
Acknowledgment
References
Organometallic Dendrimers
14.07.1. Introduction
14.07.2. Metallodendrimers with organometallic cores
14.07.3. Metallodendrimers with organometallic branches
14.07.4. Metallodendrimers with organometallic peripheries
14.07.5. Concluding remarks
Acknowledgment
References
Organometallic Functionalized MOFs - Reactivity and Catalysis
Nomenclature
14.08.1. Introduction
14.08.2. Linker-based organometallic complexes
14.08.2.1. Metal carbonyl complexes
14.08.2.2. NHC complexes
14.08.2.3. Metal-phosphine complexes
14.08.2.4. Cyclometalated linkers
14.08.2.5. N-donor-based linkers
14.08.2.6. Organometallic complexes tethered to linkers
14.08.3. Organometallic species bound at MOF nodes
14.08.4. Non-covalently encapsulated organometallic species
14.08.5. Organometallic metal nodes
Acknowledgment
References
Organometallic Mesogens
14.09.1. Preamble
14.09.2. General introduction
14.09.2.1. Terminology in liquid crystals
14.09.2.2. Liquid crystals characterization
14.09.2.3. Physical properties and applications
14.09.3. Organometallic liquid crystals of the main group elements
14.09.4. Organometallic liquid crystals of the group 6 elements
14.09.5. Organometallic liquid crystals of the group 7 elements
14.09.6. Organometallic liquid crystals of the group 8 elements
14.09.6.1. Complexes of iron without Cp
14.09.6.2. Ruthenium organometallic liquid crystals
14.09.6.3. Ferrocene-containing liquid crystals
14.09.6.3.1. Introduction
14.09.6.3.2. Monosubstituted ferrocenes
14.09.6.3.3. Disubstituted ferrocenes
14.09.6.3.4. Heteronuclear complexes with ferrocene as ligand
14.09.6.3.5. Ferrocene-containing fullerenes
14.09.6.3.6. Conclusions
14.09.7. Organometallic liquid crystals of the group 9 elements
14.09.7.1. Rhodium carbonyl complexes
14.09.7.2. Cyclometalated iridium complexes
14.09.8. Organometallic liquid crystals of the group 10 elements
14.09.8.1. Isocyanide complexes
14.09.8.2. Carbene complexes
14.09.8.3. σ-Acetylide complexes
14.09.8.4. Allyl and olefin complexes of palladium
14.09.8.5. Ortho-metalated palladium(II) and platinum(II) complexes
14.09.8.5.1. Ortho-metalated azo and azoxy complexes
14.09.8.5.2. Ortho-metalated imine complexes
14.09.8.5.3. Ortho-metalated pyrimidine and pyridine complexes
14.09.8.5.4. Other ortho-metalated complexes, and related systems
14.09.9. Organometallic liquid crystals of the group 11 elements
14.09.9.1. Isocyanide complexes
14.09.9.1.1. Mixed isocyanide acetylide complexes
14.09.9.1.2. Mixed isocyanide halides complexes
14.09.9.1.3. Mixed isocyanide haloaryl complexes
14.09.9.1.4. Isocyanide dendrimers
14.09.9.1.5. Hydrogen-bonded isocyanide derivatives
14.09.9.1.6. Isocyanide for discotic mesogens
14.09.9.1.7. Isocyanide as a colorant
14.09.9.2. Carbene complexes
14.09.10. Concluding comments
Acknowledgment
References
Organometallic Complexes for Optoelectronic Applications
14.10.1. Organometallic complexes for mechanoluminescence
14.10.1.1. Introduction
14.10.1.1.1. Mechanism of ML
14.10.1.1.2. Characterization of ML
14.10.1.2. Eu(III) complexes
14.10.1.2.1. Ionic Eu(III) complexes
14.10.1.2.2. Neutral Eu(III) complexes
14.10.1.2.3. Eu(III) coordination polymers
14.10.1.3. Sm(III), Tb(III) and Dy(III) complexes
14.10.1.4. Mn(II) complexes
14.10.1.5. Cu(I) complexes
14.10.1.6. Other complexes
14.10.1.7. Conclusions
14.10.2. Organometallic complexes as mechanochromic luminogens
14.10.2.1. Introduction
14.10.2.2. Ir (III) complexes
14.10.2.3. Pt(II) complexes
14.10.2.4. Cu(I) complexes
14.10.2.5. Ag(I) complexes
14.10.2.6. Au(I) complexes
14.10.2.7. Zn(II) complexes
14.10.2.8. Other complexes
14.10.2.9. Conclusions
References
Organometallic Lanthanide Complexes as Single Molecule Magnets
14.11.1. Introduction
14.11.2. η4-Cyclobutadienyl ligand based lanthanide complexes as SMMs
14.11.3. η5-Cyclopentadienyl ligand based lanthanide complexes as SMMs
14.11.3.1. General remarks
14.11.3.2. η5-Cyclopentadienyl ligated lanthanide complexes with competing equatorial ligands
14.11.3.3. Cationic metallocene SMMs
14.11.3.4. Dysprosium metallocene complexes containing bridging borohydride ligands
14.11.3.5. Lanthanide metallocenes containing bridging radical ligands
14.11.4. η5-Dicarbollide dianion based dysprosiacarborane SMMs
14.11.5. η6-Arene ligated dysprosium complexes as SMMs
14.11.6. η7-Cycloheptatrienyl ligand based lanthanide complexes as SMMs
14.11.7. η8-Cyclooctatetraenyl ligand based lanthanide complexes as SMMs
14.11.7.1. [CpLn(COT)] and [Ln(COT)2]- motif-based complexes
14.11.7.2. COT-ligated lanthanide complexes with heteroaromatic ligands
14.11.8. Methanide and bismethane(diide) ligand based lanthanide complexes as SMMs
14.11.9. Conclusions
Acknowledgment
References
Organometallic Receptors for Charged and Neutral Guest Species
14.12.1. Introduction
14.12.2. Organometallic cation receptors
14.12.2.1. Cation receptors based on ferrocene
14.12.2.2. Cation receptors based on cyclometalated iridium
14.12.2.3. Cation receptors based on alkynyl gold motifs
14.12.2.4. Cation receptors based on alkynyl platinum motifs
14.12.2.5. Cation receptors based on other organometallic motifs
14.12.3. Organometallic anion receptors
14.12.3.1. Anion receptors based on ferrocene
14.12.3.2. Anion receptors based on metal carbonyl complexes
14.12.3.3. Anion receptors based on cyclometalated iridium
14.12.3.4. Anion receptors based on other motifs
14.12.4. Organometallic ion-pair receptors
14.12.4.1. Ion-pair receptors based on ferrocene
14.12.4.2. Other organometallic ion-pair receptors
14.12.5. Organometallic receptors for neutral guests
14.12.5.1. Receptors based on ferrocene
14.12.5.2. Receptors based on half-sandwich complexes
14.12.5.3. Receptors based on NHCs
14.12.5.4. Receptors based on alkynyl platinum and gold motifs
14.12.6. Conclusions and outlook
References
Surface Organometallic Chemistry and Catalysis
14.13.1. Introduction
14.13.2. Solid-state NMR spectroscopy: An unique tool in SOMC characterization
14.13.2.1. Nuclear magnetic resonance (NMR) spectroscopy
14.13.2.2. Solution-state vs. solid-state NMR (ssNMR)
14.13.2.3. The ssNMR and nuclei with quadrupolar magnetic moment
14.13.2.4. Reintroduction of DD interaction in ssNMR and proximity information
14.13.2.5. NMR sensitivity
14.13.2.6. Hyperpolarization and DNP
14.13.2.7. Concept of dynamic nuclear polarization (DNP)
14.13.2.8. Experimental approaches of DNP and DNP-MAS
14.13.2.9. Effective surface enhancements and DNP SENS
14.13.2.10. DNP SENS ssNMR in SOMC: Challenges and solutions
14.13.2.11. The ssNMR with and without DNP SENS in the characterization of SOMC
14.13.2.12. 15N ssNMR spectroscopy
14.13.2.13. 17O MAS NMR spectroscopy
14.13.2.14. 31P ssNMR spectroscopy
14.13.2.15. 1D MAS and 2D HETCOR ssNMR experiments
14.13.2.16. 1D 29Si CP-MAS and 2D 1H29Si HETCOR ssNMR in characterization of SOMC
14.13.2.17. 2D DNP SENS 13C111Cd HETCOR spectra of CdSe QDs
14.13.2.18. 27Al ssNMR spectroscopy
14.13.2.19. HETCOR between 1H and Quadrupolar nuclei
14.13.2.20. HETCOR between a low abundant spin and quadrupolar nuclei
14.13.2.21. 2D INADEQUATE ssNMR spectroscopy
14.13.2.22. The multiple quantum (MQ) NMR spectroscopy
14.13.2.23. 2D 1H1H SQ-MQ correlation ssNMR experiments
14.13.2.24. 195Pt DNP SENS ssNMR
14.13.3. Alkane metathesis
14.13.3.1. Linear alkane metathesis with [W]H and [Ta]H (1st generation catalyst)
14.13.3.2. Liquid phase alkane metathesis reaction
14.13.3.3. Cycloalkane metathesis
14.13.3.4. Understanding alkane metathesis with a bi-metallic catalyst
14.13.4. Low temperature hydrogenolysis of alkanes
14.13.5. Cross-metathesis of alkanes
14.13.6. Imine metathesis
14.13.7. Hydroamination reaction
14.13.8. Hydrometathesis of olefins
14.13.9. Catalytic reduction of N2 toward NH3
14.13.10. Light alkanes aromatization
14.13.10.1. Introduction
14.13.10.2. Aromatization by SOMC methodology (catalysis by design)
14.13.11. Catalytic oxidation reaction by SOMC with O2: A new route to acetaldehyde
14.13.12. Hydro peroxide decomposition
14.13.13. Olefin epoxidation
14.13.14. The Baeyer-Villiger reaction
14.13.15. Catalytic CO2 conversion by SOMC
14.13.16. Conclusions
References
Common Precursors and Surface Mechanisms for Atomic Layer Deposition
14.14.1. Introduction
14.14.2. Alkyl compounds
14.14.3. Cyclopentadienyl compounds
14.14.4. Amide compounds
14.14.5. Chelate nitrogen compounds
14.14.6. Alkoxide compounds
14.14.7. Beta-diketonate compounds
14.14.8. Carbonyl compounds
14.14.9. Summary
Acknowledgment
References
Back Cover
Front Cover
Comprehensive Organometallic Chemistry IV
Contents of volume 15
Editor Biographies
Editors in Chief
Volume Editors
Contributors to Volume 15
Preface
Introduction to Applications IV. Bio-Organometallics, Metallo-Therapy, Metallo-Diagnostics, Medicine and Environmental Che ...
Hydrogenases and Model Complexes in Bioorganometallic Chemistry
15.02.1. Hydrogenases and models in bioorganometallic chemistry
15.02.1.1. Introduction
15.02.1.1.1. The aim of this book chapter
15.02.1.1.2. General overview
15.02.1.1.3. Metal hydrides
15.02.1.1.4. The role of proton-coupled electron transfer in H2/2H+ interconversion
15.02.1.2. [FeFe] hydrogenases and their model compounds
15.02.1.2.1. Structure and mechanism
15.02.1.2.2. H-cluster assembly
15.02.1.2.3. [FeFe] hydrogenase model chemistry
15.02.1.2.3.1. Di-cyanide containing models and variations of the bridging di-thiolate ligand
15.02.1.2.3.2. Replicating the rotated structure
15.02.1.2.3.3. Mimicking the [4Fe4S]H cluster - redox active ligands
15.02.1.2.3.4. Ligand and metal protonation sites of [2Fe]H models
15.02.1.2.3.5. Bridging versus terminal hydrides and their involvement in catalysis
15.02.1.2.3.6. Artificial maturation and semi-synthetic [FeFe] hydrogenases
15.02.1.3. [NiFe] hydrogenase and their model compounds
15.02.1.3.1. Structure and functions of [NiFe] hydrogenases
15.02.1.3.2. Mechanisms for proton and hydrogen conversion in [NiFe] hydrogenases
15.02.1.3.3. Unique oxygen tolerance in [NiFe] and [NiFeSe] hydrogenases
15.02.1.3.4. Biomimetic Ni containing analogs
15.02.1.3.4.1. [NiFe] analogs based on heterobimetallic Ni complexes
15.02.1.3.4.2. Understanding O2 tolerance in [NiFe] and [NiFeSe] hydrogenases
15.02.1.3.4.3. Bioinspired Ni only complexes
15.02.1.3.5. Future challenges in developing [NiFe] model complexes
15.02.1.4. [Fe] hydrogenase and their model compounds
15.02.1.4.1. Enzymatic activity, inhibitors and isolatable cofactors
15.02.1.4.2. Early `iron free hypothesis and refutation
15.02.1.4.3. Spectroscopic studies
15.02.1.4.4. Structure and mechanism of [Fe] hydrogenase
15.02.1.4.5. Model complexes of the FeGP cofactor
Acknowledgment
References
Nitrogenases and Model Complexes in Bioorganometallic Chemistry
15.03.1. Introduction
15.03.2. Nitrogenase
15.03.2.1. The Fe protein and the F-cluster
15.03.2.2. The MoFe protein
15.03.2.2.1. The P-cluster
15.03.2.2.2. Atomic and electronic structure of the FeMo cofactor resting state
15.03.3. Interaction of FeMoco with substrates
15.03.3.1. Nitrogen
15.03.3.1.1. The kinetic model of N2 reduction
15.03.3.1.2. The E1 state
15.03.3.1.3. The E2 and E4 states
15.03.3.1.3.1. The oxidative addition/reductive elimination model of the E4 state
15.03.3.1.3.2. Computational models of the E4 state
15.03.3.1.4. The E7 and E8 states
15.03.3.1.5. The alternating and distal mechanisms
15.03.3.2. Alternative substrates
15.03.3.2.1. Protons, H+
15.03.3.2.2. Acetylene
15.03.3.2.3. Carbon monoxide and selenocyanate
15.03.3.2.4. Cyanide
15.03.3.2.5. The surroundings of the FeMoco, and extracted FeMoco
15.03.3.3. Alternative nitrogenases
15.03.3.3.1. Reactivity of V-nitrogenase towards carbon monoxide
15.03.4. Biosynthesis of FeMoco
15.03.4.1. Radical-SAM enzymes and alkylated Fe4S4 clusters
15.03.5. Model complexes
15.03.5.1. Functional models of catalytic N2 reduction
15.03.5.2. Iron-sulfur clusters
15.03.5.3. Iron complexes with sulfur and N2 ligands
15.03.5.4. Iron complexes with sulfur and NxHy ligands
15.03.5.5. Iron carbides
15.03.5.6. Iron complexes with other carbon ligands
15.03.5.7. Iron hydrides
15.03.5.8. Modeling second-sphere effects
15.03.6. Outlook
15.03.7. Note Added in Proof
Acknowledgment
References
Bioorganometallic Chemistry of Vitamin B12-Derivatives
15.04.1. Introduction
15.04.2. The structure of organometallic B12-derivatives
15.04.2.1. Cobalamins and other ``complete´´ B12-derivatives
15.04.2.2. ``Incomplete´´ B12-derivatives
15.04.2.3. Cobamides as molecular switches
15.04.3. Organometallic chemistry of B12-derivatives
15.04.3.1. Formation and cleavage of the (CoC)-bond in B12-derivatives
15.04.3.2. Thermally induced CoC bond homolysis
15.04.3.3. The nucleophile induced heterolysis and formation of the CoC bond
15.04.3.4. Radical induced abstraction of cobalt-bound alkyl groups
15.04.4. Redox-chemistry of B12-derivatives
15.04.5. Enzymatic organometallic processing of cobalamins
15.04.6. Enzymatic reactions catalyzed by organometallic B12-cofactors
15.04.6.1. B12-dependent methyl transferases
15.04.6.1.1. B12-dependent methionine synthase
15.04.6.1.2. B12- and S-adenosylmethionine-dependent radical methyl transferases
15.04.6.2. Organometallic chemistry of enzymes dependent on coenzyme B12
15.04.6.2.1. Coenzyme B12-dependent isomerases
15.04.6.2.2. Coenzyme B12-dependent ribonucleotide reductase
15.04.6.3. B12-dependent dehalogenases
15.04.7. Gene-regulatory roles of organometallic B12-derivatives
15.04.7.1. B12-riboswitches
15.04.7.2. Photo-regulation of gene expression by coenzyme B12
15.04.8. Organometallic cobalamins as antivitamins B12
15.04.9. Metbalamins: Transition-metal analogues of cobalamin
15.04.10. Summary and outlook
Acknowledgment
References
Bioorganometallics: Artificial Metalloenzymes With Organometallic Moieties
15.05.1. Introduction
15.05.2. Artificial metalloenzymes based on the biotin-streptavidin technology
15.05.2.1. C-H activation
15.05.2.2. Suzuki cross-coupling
15.05.2.3. Transfer hydrogenation
15.05.2.4. Ring closing metathesis (RCM)
15.05.2.5. Hydroamination and hydroarylation
15.05.3. Artificial metalloenzymes based on human carbonic anhydrase
15.05.3.1. Imine transfer hydrogenation
15.05.3.2. Metathesis
15.05.4. Artificial metalloenzymes based on myoglobin
15.05.4.1. Carbene insertion and cyclopropanation
15.05.5. Artificial metalloenzymes based on thermophilic cytochrome P450 (CYP119)
15.05.5.1. Carbene insertion into C-H bond
15.05.5.2. Cyclopropanation
15.05.5.3. C-H amination
15.05.6. Artificial metalloenzymes based on POP scaffold
15.05.6.1. Si-H insertion
15.05.6.2. Cyclopropanation
15.05.7. Artificial metalloenzymes based on nitrobindin
15.05.7.1. Rh alkyne polymerization
15.05.7.2. Ru metathesis
15.05.7.3. C-H functionalization
15.05.7.4. Other reactions with nitrobindin scaffold
Acknowledgment
References
Relevant Website
Opportunities for interfacing organometallic catalysts with cellular metabolism
15.06.1. Introduction
15.06.1.1. Synthesis-Toward a concerted effort of synthetic chemists and biologists?
15.06.1.2. Opportunities and challenges of interfacing organometallic reactions with cellular metabolism
15.06.1.3. Scope of this book chapter
15.06.2. The role of non-enzymatic transition-metal catalysis in the emergence and maintenance of biochemistry
15.06.2.1. Primordial metabolic pathways
15.06.2.2. Microbial extracellular electron transfer
15.06.2.3. The curious case of lignocellulose degradation by brown-rot fungi
15.06.3. Identifying biocompatible catalysts
15.06.3.1. Screening under biologically-relevant conditions
15.06.3.2. Using pro-fluorophores to determine catalyst activity and localization in vivo
15.06.3.3. Assessing biocompatibility by interfacing catalyst activity with cellular metabolism
15.06.3.4. Means to make bio-incompatible catalysts biocompatible
15.06.4. Interfacing biocompatible catalysts with cellular metabolism
15.06.4.1. Employing biocompatible catalysis for the biocontainment of genetically-modified organisms
15.06.4.2. Adding to the repertoire of biocompatible CX-bond forming reactions
15.06.4.3. Approaches to the synthesis of value-added compounds
15.06.5. Conclusions and future directions
References
Oligonucleotide Complexes in Bioorganometallic Chemistry
Glossary
15.07.1. Introduction
15.07.2. Complexes of oligonucleotides with organometallic compounds
15.07.2.1. Non-coordinating interactions
15.07.2.2. Coordinating interactions
15.07.2.2.1. Interplay of coordination, intercalation and groove binding
15.07.2.2.2. Preferred coordination sites on nucleic acids
15.07.2.2.3. Cross-linking
15.07.3. Organometallic and organometalloid oligonucleotides
15.07.3.1. Synthesis of organometallic and organometalloid oligonucleotides
15.07.3.1.1. Electrophilic aromatic substitution
15.07.3.1.2. Oxidative addition
15.07.3.1.3. Ligand-directed cyclometalation
15.07.3.1.4. Post-synthetic conjugation in solution
15.07.3.1.5. On-support conjugation
15.07.3.1.6. Solid phase synthesis using organometallic and organometalloid building blocks
15.07.3.1.7. Enzymatic polymerization
15.07.3.2. Organometallic and organometalloid oligonucleotides as synthetic intermediates
15.07.3.2.1. Halodemercuration and halodestannylation
15.07.3.2.2. Palladium-catalyzed cross-coupling reactions
15.07.3.3. Reversible ligation of organoboron oligonucleotides
15.07.3.4. Metal-mediated base pairing of organometallic oligonucleotides
15.07.3.4.1. Hg(II)-mediated base pairing
15.07.3.4.2. Pd(II)-mediated base pairing
15.07.3.5. Organometallic nucleobases as affinity tags
15.07.3.6. Organomercury nucleotides as isomorphous heavy atom derivatives in X-ray crystallography
15.07.3.7. Sensor and imaging applications
15.07.3.7.1. Electrochemical labeling of hybridization probes
15.07.3.7.2. Detection of single-nucleotide polymorphisms
15.07.3.7.3. Biomolecule sensors
15.07.3.7.4. Cation sensors
15.07.3.7.5. Intracellular imaging
15.07.3.8. Toward therapeutic applications
15.07.3.8.1. Organometallic oligonucleotides and drug delivery
15.07.3.8.2. Biostability of organometallic and organometalloid oligonucleotides
15.07.3.8.3. Affinity and selectivity of organometallic and organometalloid oligonucleotides for intracellular targets
15.07.3.8.4. Boron neutron capture therapy
15.07.4. Summary and outlook
Acknowledgment
References
Organometallic Receptors and Conjugates With Biomolecules in Bioorganometallic Chemistry
15.08.1. Introduction
15.08.2. Analytical techniques to assess the accumulation and distribution of organometallics
15.08.2.1. In vitro
15.08.2.2. In vivo
15.08.3. Approaches to study organometallic-protein interactions
15.08.3.1. Metalloproteomics
15.08.3.2. Protein target identification
15.08.3.3. Metabolomics and multi-omics approaches
15.08.4. Organometallic conjugates with biomolecules
15.08.4.1. Strategies to synthesize organometallic-peptidic conjugates
15.08.4.1.1. Amide coupling
15.08.4.1.2. Direct metalation of amino acids
15.08.4.1.3. Sonogashira coupling
15.08.4.1.4. Alkyne-azide coupling
15.08.4.1.5. Maleimide-thiol coupling
15.08.4.1.6. NHC coupling
15.08.4.1.7. Miscellaneous
15.08.4.2. Targeting strategies
15.08.4.2.1. Blood
15.08.4.2.2. Membrane receptors
15.08.4.2.3. Cell penetrating peptides
15.08.4.2.4. Subcellular targeting
15.08.4.2.5. Miscellaneous
15.08.5. Conclusions
References
Organometallic Chemistry of Anticancer Ruthenium and Osmium Complexes
15.09.1. Introduction
15.09.2. Early discoveries and design of bioactive organometallic compounds
15.09.3. Sandwich metal complexes-ruthenocenes and osmocenes
15.09.4. Half-sandwich metal(II)-arene complexes of ruthenium and osmium
15.09.4.1. RAPTA inspired half-sandwich complexes
15.09.4.2. RAED-inspired organoruthenium and -osmium complexes
15.09.4.3. N-heterocyclic carbene (NHC) complexes
15.09.4.4. Cyclometalated Ru(II) and Os(II) arene complexes
15.09.4.5. Bioconjugates of half-sandwich organoruthenium and osmium complexes
15.09.5. Multinuclear Ru and Os organometallics
15.09.6. Cytotoxic organometallic clusters of Ru and Os
15.09.7. Conclusions
Acknowledgment
References
Organometallic Chemistry of Drugs Based on Technetium and Rhenium
15.10.1. Introduction
15.10.1.1. General aspects about technetium and rhenium drugs
15.10.1.2. Properties of technetium in molecular imaging
15.10.1.3. Rhenium in radiotherapy and in ``cold´´ drugs
15.10.2. Technetium imaging agents
15.10.2.1. Cancer targeting
15.10.2.2. Labelled peptides and proteins
15.10.2.3. Alzheimer's disease and β-amyloid targeting with 99mTc
15.10.2.4. Cell nucleus targeting and Auger electrons
15.10.2.5. Labelled nanoparticles - Multi modality imaging
15.10.3. Small molecules with rhenium and 99mTc homologs
15.10.3.1. De novo matched-pair complexes with Re and 99mTc
15.10.3.2. Homologs of Re and 99mTc with pendent pharmacophores or substrates
15.10.3.3. Pharmacomimetics with integrated complexes
15.10.4. Miscellaneous
15.10.5. Concluding remarks
Acknowledgment
References
Organometallic Chemistry of Drugs Based on Iron
Abbreviations
15.11.1. Introduction
15.11.2. Antimalarial compounds containing ferrocene
15.11.2.1. Ferrocene and its biological activity
15.11.2.1.1. Ferroquine and its derivatives as antimalarial agents
15.11.2.1.1.1. Antimalarial mechanism of action of ferroquine
15.11.2.1.1.2. Ferroquine-based antimalarials
15.11.2.1.1.3. Ferrocenyl derivatives of artemisinin: A natural product inspiration
15.11.3. Anticancer activity of ferrocene-based compounds
15.11.3.1. Ferrocifens
15.11.3.2. Ferroquine repurposed as a potential anticancer agent
15.11.3.3. Ferrocenyl hybrids containing other scaffolds
15.11.3.4. Small molecule bimetallic ferrocenyl derivatives
15.11.3.5. Multinuclear, macromolecular ferrocenyl compounds
15.11.4. Organometallic ferrocene compounds against neglected tropical diseases
15.11.4.1. Trypanosomiasis: Human African trypanosomiasis and Chagas disease
15.11.4.1.1. Trypanocidal ferrocenyl compounds derived from clinical antitrypanosomal drug scaffolds
15.11.4.1.2. Trypanocidal ferrocenyl compounds inspired by bioactive scaffolds contained in the MMV pathogen box
15.11.4.1.3. Heteronuclear ferrocenyl antitrypanosomal compounds targeting NADH-fumarate reductase, epimastigote necrosis ...
15.11.4.1.4. Ferrocifens and heterocyclic ferrocenyl compounds as trypanocidal agents
15.11.4.2. Ferrocenyl compounds as potential agents against leishmaniasis
15.11.4.2.1. Heterobimetallic ferrocenyl antimonials possessing anti-leishmanial activity by targeting DNA interaction
15.11.4.2.2. Ferrocenyl quinolines inhibiting the growth of Leishmania parasites
15.11.4.2.3. Quinazoline- and benzimidazole-based derivatives of ferrocene active against leishmaniasis
15.11.5. Antiviral ferrocene-containing compounds
15.11.5.1. Ferrocene-containing compounds as anti-HIV compounds
15.11.5.1.1. Ferrocene-peptides inactivate HIV-1 by targeting viral proteins
15.11.5.1.2. Ferrocenyl anti-HIV compounds inhibiting HIV-1 integrase
15.11.5.1.3. Bimetallic ferrocene-based gold(I) complexes as anti-HIV compounds
15.11.5.2. Ferrocenyl complexes active against strains of herpes and hepatitis viruses
15.11.5.2.1. Artemisinin- and betulin-ferrocene hybrids active against herpes virus
15.11.5.2.2. Ferrocene-based inhibitors of hepatitis C virus
15.11.6. Ferrocene-containing compounds as antitubercular agents
15.11.6.1. Isatin- and uracil-ferrocene hybrids as anti-TB agents
15.11.6.2. Bimetallic heteronuclear ferrocene complexes with anti-TB potency
15.11.7. Alzheimer's disease
15.11.8. Non-ferrocenyl organometallic iron compounds with biological activity
15.11.8.1. Homometallic iron(II) organometallic half-sandwich complexes
15.11.8.2. Heterobimetallic iron(II) organometallic half-sandwich complexes
15.11.9. Conclusions
Acknowledgment
References
Relevant Websites
Organometallic Chemistry of Gold-Based Drugs
15.12.1. Introduction
15.12.2. Gold(I) N-heterocyclic carbenes
15.12.2.1. Anticancer gold(I) NHC complexes and their modes of action
15.12.2.1.1. Mononuclear and binuclear gold(I) NHC complexes
15.12.2.1.2. Heteronuclear complexes featuring Au(I) NHCs moieties
15.12.2.2. Gold(I) NHC complexes as antibacterial and antiparasitic
15.12.2.2.1. Antibacterial complexes
15.12.2.2.2. Antimalarial and antileishmanial complexes
15.12.3. Cyclometalated Au(III) complexes
15.12.3.1. Anticancer Au(III) cyclometalated complexes and their modes of action
15.12.4. Conclusions and perspectives
References
Manganese-Based Carbon Monoxide-Releasing Molecules: A Multitude of Organometallic Pharmaceutical Candidates Primed for Fu ...
15.13.1. Introduction
15.13.1.1. General introduction to manganese
15.13.2. Carbon monoxide releasing-molecules
15.13.2.1. Introduction to carbon monoxide releasing-molecules (CO-RMs)
15.13.2.2. Overview of methods of CO-release and detection from CO-RMs
15.13.2.2.1. Thermal CO-release
15.13.2.2.2. Chemically triggered CO-release
15.13.2.2.3. Light-induced CO-release
15.13.2.3. Mn-based CO-RMs and their synthesis/properties
15.13.2.3.1. Thermally/chemically triggered Mn-based CO-RMs
15.13.2.3.2. Photoactivated manganese-based CO-RMs
15.13.2.3.2.1. Development of phenylpyridine manganese tetracarbonyl CO-RMs: From basic motif to versatile functionality
15.13.2.3.2.2. Lowering the energy of photo-excitation required to obtain CO-release
15.13.3. Conclusions
Acknowledgment
References
Organometallic Synthesis in Flow
15.14.1. Introduction
15.14.2. Organolithium reagents in flow
15.14.2.1. Preparation of organolithium reagents in flow
15.14.2.1.1. By direct insertion
15.14.2.1.2. By Halogen/lithium exchange
15.14.2.1.3. By directed lithiation
15.14.2.2. Reaction of organolithium reagents in flow
15.14.3. Organomagnesium reagents in flow
15.14.3.1. Preparation of organomagnesium reagents in flow
15.14.3.1.1. By direct insertion
15.14.3.1.2. By halogen-magnesium exchange
15.14.3.1.3. By directed metalation
15.14.3.2. Reactions of organomagnesium reagents in flow
15.14.4. Organozinc reagents in flow
15.14.4.1. Preparation of organozinc reagents in flow
15.14.5. Organosodium and organopotassium reagents in flow
15.14.6. Preparation and cross-couplings of organoboron reagents in flow
15.14.7. Conclusion
References
Index
Back Cover