Composites for Building Assembly: Connections, Members and Structures

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents buildings developed using modular assembly approaches based on lightweight and corrosion-resistant fiber reinforced polymer (FRP) composites. Construction methods and the choice of building materials offer great opportunities for more productive and environmentally friendly solutions. This book includes valuable experimental data on large-scale structural components (beams, slabs, amd columns), connections (shear connections, wall stud connections, beam-column connections, column-column connections) and structures (composite floor system, structural sandwich assemblies, and full-scale structural demonstrations), supported with detailed numerical modelling and analytical methods. Largely drawing on the editor’s research over the past ten years with inputs from a number of Ph.D. students, this timely book presents the latest developments in the field. 

It includes well-designed figures and photographs, analytical formulations supported by data and text, as well as descriptions to i) introduce a series of innovative structural components and connections and their assemblies and ii) illustrate their performance compared to existing solutions and criteria. This book is intended for researchers, graduate students and engineers in fields of the construction and composites industries. 


Author(s): Yu Bai
Series: Springer Tracts in Civil Engineering
Publisher: Springer
Year: 2023

Language: English
Pages: 386
City: Singapore

Preface
Disclaimer
Contents
1 Introduction
1.1 Background
1.2 Development of FRP Building Structures
1.2.1 Free-Form Structures by Lay-Up and Moulding Process
1.2.2 Snap-Fit Panelised Structures
1.2.3 Frame Structures Assembled from Pultruded FRPs
1.3 Scope of the Work
1.3.1 Beam and Slab Members
1.3.2 Column and Wall Members
1.3.3 Connections
1.3.4 Fire Resistance
1.3.5 Large Scale Structural Applications
References
2 Fibre Reinforced Polymer Built-Up Beams and One-Way Slabs
2.1 Introduction
2.2 Experimental Investigation
2.2.1 Overview
2.2.2 Materials
2.2.3 Specimens
2.2.4 Experimental Setup and Instrumentation
2.3 Experimental Results
2.3.1 Load–Deflection Response
2.3.2 Failure Mode
2.3.3 Axial Strain Along Specimen Depth
2.3.4 Axial Strain Along Specimen Width
2.4 Discussion and Comparison
2.4.1 Bending Stiffness
2.4.2 Structural Load-Carrying Capacity
2.4.3 Effect of Foam Core
2.4.4 Effect of Discontinuous Bonding
2.4.5 Comparison to RC One-Way Spanning Slab
2.5 Conclusions
References
3 Fibre Reinforced Polymer Composites Two-Way Slabs
3.1 Introduction
3.2 Experimental Investigation
3.2.1 Materials
3.2.2 Specimens
3.2.3 Setup and Instrumentation
3.3 Simplified FE Analysis
3.4 Experimental Results and Comparison with FE Modelling
3.4.1 Load–Deflection Responses and Bending Stiffness
3.4.2 Failure Modes and Load-Carrying Capacity
3.4.3 Stresses on Slab Surface
3.4.4 Axial Strains Along Depth of Section
3.5 Analytical Approach and Discussion
3.5.1 Grillage Analysis
3.5.2 Degree of Composite Action in Longitudinal Slab Direction
3.5.3 Degree of Composite Action in Transverse Slab Direction
3.5.4 Load-Carrying Capacity
3.6 Conclusions
References
4 Steel- Fibre Reinforced Polymer Composite Beams
4.1 Introduction
4.2 Experimental Investigation
4.2.1 Materials
4.2.2 Specimens
4.2.3 Experimental Setup and Instrumentation
4.3 Experimental Results and Discussion
4.3.1 Load–Deflection Response
4.3.2 Yielding of Composite Beams
4.3.3 Failure of Composite Beams
4.3.4 Composite Action at FRP-Steel Interface
4.3.5 Composite Action of FRP Web-Flange Sandwich Slabs
4.3.6 Axial Strain Along Specimen Width
4.4 Analytical Evaluation
4.4.1 Effective Width and Shear Lag
4.4.2 Bending Stiffness
4.4.3 Degree of Composite Action Factor Λ
4.4.4 Evaluation of Deflections
4.4.5 Yielding Load Py
4.5 Numerical Comparison
4.6 Conclusions
References
5 Composite Actions of Steel-Fibre Reinforced Polymer Composite Beams
5.1 Introduction
5.2 Description of Steel-FRP Composite Beams
5.3 Experimental Investigation on Shear Stiffness of One-Sided Bolt Connectors
5.3.1 Materials
5.3.2 Joint Specimens and Experimental Setup
5.4 Results and Discussion
5.4.1 Joint Stiffness and Slip Modulus
5.4.2 Joint Capacity
5.5 Theoretical Formulation of Partial Composite Actions
5.5.1 Bending Stiffness Considering Partial Composite Action at Steel/FRP Interface
5.5.2 Bending Stiffness Considering Partial Composite Actions at Steel/FRP Interface and Within the FRP Slab
5.6 Concluding Remarks
References
6 Fibre Reinforced Polymer Columns in Axial Compression
6.1 Introduction
6.2 Experimental Study
6.2.1 Materials
6.2.2 Specimens
6.2.3 Experimental Setup and Instrumentation
6.3 Experimental Results and Discussion
6.3.1 Failure Modes
6.3.2 Load-Strain Responses
6.3.3 Load-Lateral Displacement Curves
6.3.4 Determination of Compressive Capacity PC and Local Buckling Load PLocal
6.4 Effects of Width-Thickness Ratio b/t on Failure Modes
6.4.1 Formulation of Critical b/t for Compressive Failure and Local Buckling
6.4.2 Comparison with Experimental Results
6.4.3 Full Failure Modes Map
6.5 Load-Carrying Capacity Considering Λ and b/t for SHS Sections
6.5.1 Formulation
6.5.2 Comparisons
6.6 Conclusions
References
7 Fibre Reinforced Polymer Wall Assemblies in Axial Compression
7.1 Introduction
7.2 Experimental Investigation
7.2.1 Materials
7.2.2 Specimens
7.2.3 Setup and Instrumentation
7.3 Finite Element Analysis
7.4 Experimental Results
7.4.1 Failure Modes
7.4.2 Load-Axial Displacement Curves
7.4.3 Load-Lateral Displacement Curves
7.4.4 Load-Strain Responses
7.5 Discussions
7.5.1 Load-Bearing Capacity
7.5.2 Effects of Spacing Between SHS Sections
7.5.3 Comparison of Bonded and Bolted Connections
7.6 Conclusions
References
8 Fibre Reinforced Polymer Columns with Bolted Sleeve Joints under Eccentric Compression
8.1 Introduction
8.2 Experimental Program
8.2.1 Materials and Specimens
8.2.2 Bolted Sleeve Joint (BSJ)
8.2.3 Experimental Setup and Instrumentation
8.3 FE Analysis
8.3.1 Model Description
8.3.2 Failure Criterion
8.4 Results and Discussion
8.4.1 Failure Modes
8.4.2 Load-Axial Shortening Curves
8.4.3 Load-Lateral Displacement Curves
8.4.4 Load-Axial Strain Responses
8.4.5 FE Verification of Splitting Failure at BSJ Region
8.4.6 Load-Bearing Capacities of GFRP Columns with BSJs
8.4.7 P-M Interaction Curve
8.5 Conclusions
References
9 Connections of Fibre Reinforced Polymer to Steel Members: Experiments
9.1 Introduction
9.2 Experimental Program
9.2.1 Connection Design
9.2.2 Materials
9.2.3 Specimens
9.2.4 Experimental Set-Up and Instrumentation
9.3 Experimental Results and Discussions
9.3.1 Failure Modes
9.3.2 Moment-Rotation and Shear-Rotation Curves
9.3.3 Strain Responses of Steel Connectors
9.3.4 Comparisons on the Connection Stiffness and Capacity
9.3.5 Classification of the Connections
9.4 Conclusions
References
10 Connections of Fibre Reinforced Polymer to Steel Members: Numerical Modelling
10.1 Introduction
10.2 Experimental Summary
10.3 Detailed FE Modelling
10.3.1 Material Properties
10.3.2 Failure Criteria
10.3.3 Model Set-Up
10.4 Verification of Modelling Results
10.5 Parametric Study of Bonded Sleeve Connections
10.5.1 Effect of Endplate Thickness
10.5.2 Effect of Bonded Sleeve Length
10.5.3 Effect of Number of Go-Through Bolts
10.5.4 Effect of Central One-Sided Bolts for Connecting Endplate
10.6 Conclusions
References
11 Cyclic Performance of Bonded Sleeve Beam-Column Connections
11.1 Introduction
11.2 Experimental Program
11.2.1 Materials
11.2.2 Specimens
11.2.3 Cyclic Loading Program
11.2.4 Experimental Setup
11.2.5 Instrumentation
11.3 Experimental Results and Discussion
11.3.1 Failure Modes
11.3.2 Moment-Rotation Responses
11.3.3 Local Strain Responses
11.3.4 Ultimate Rotation, Moment Capacity and Ductility of Connections
11.3.5 Energy Dissipation Capacity
11.4 Finite Element Modelling
11.4.1 Modelling Approach
11.4.2 Modelling Validation
11.4.3 Effects of Endplate Thickness
11.5 Conclusions
References
12 Joint Capacity of Bonded Sleeve Connections for Tubular Fibre Reinforced Polymer Members
12.1 Introduction
12.2 Summary of Experimental Results
12.3 Theoretical Formulation of Joint Capacity
12.3.1 Governing Differential Equations
12.3.2 Bond-Slip Relationship of Adhesive Layer
12.3.3 Joint Capacity Pe at Elastic Limit
12.3.4 Joint Capacity Pu,s1 at Ultimate State for Softening of Only One End
12.3.5 Joint Capacity Pu,s2 at Ultimate State for Softening of Both Ends
12.3.6 Joint Capacity Pu,sf at Ultimate State for Softening of Full Bond Length
12.4 FE Analysis
12.4.1 Geometries and Materials
12.4.2 Model Establishment
12.4.3 Boundary Condition and Loading
12.5 Results and Discussion
12.5.1 Comparison of Ultimate Joint Capacity
12.5.2 Shear Stress Distribution
12.5.3 Effect of Bond Length on Joint Capacity
12.5.4 Effect of Stiffness Ratio on Joint Capacities
12.6 Conclusions
References
13 Axial Performance of Splice Connections for Fibre Reinforced Polymer Columns
13.1 Introduction
13.2 Experimental Program
13.2.1 Specimens
13.2.2 Material Properties
13.2.3 Instrumentation and Experimental Setup
13.3 Finite Element Modelling
13.3.1 Geometric Modelling and Material Definitions
13.3.2 Modelling of Bond Behaviour in BSJs
13.3.3 Modelling of Contact and Pretension in BFJs
13.4 Results and Discussion: BSJ Specimens
13.4.1 Failure Modes and Load–Displacement Responses
13.4.2 Joint Capacity Versus Bond Length
13.4.3 Strain Responses
13.4.4 Adhesive Shear Stress Distribution
13.5 Results and Discussion: BFJ Specimens
13.5.1 Failure Modes and Load-Displacement Behaviours
13.5.2 Stress Distribution and Load-Strain Responses
13.6 Integrated Performance of Proposed Splice Connection
13.7 Conclusions
References
14 Cyclic Performance of Splice Connections for Fibre Reinforced Polymer Members
14.1 Introduction
14.2 Experimental Program
14.2.1 Specimens and Fabrication
14.2.2 Material Properties
14.2.3 Test Setup and Instrumentation
14.2.4 Cyclic Loading Program
14.3 Finite Element Modelling
14.3.1 Geometries, Element Types, Material Models and Boundary Conditions
14.3.2 Modelling of Steel-GFRP Bond
14.4 Results and Discussion
14.4.1 Moment-Rotation Responses and Failure Modes
14.4.2 Cyclic Performance
14.4.3 Local Strain Responses
14.4.4 GFRP Failure
14.5 Conclusions
References
15 Fire Performance of Loaded Fibre Reinforced Polymer Multicellular Composite Structures
15.1 Introduction
15.2 Experimental Investigation
15.2.1 Specimen Preparation
15.2.2 Experimental Setup
15.3 Numerical Modeling
15.3.1 Material Properties
15.4 Results and Discussion
15.4.1 Temperature Responses
15.4.2 Mid-Span Deflection
15.4.3 Effects of Fire Resistance Panel on Thermal Response
15.4.4 Mechanical Loading Effects
15.5 Conclusions
References
16 Large Scale Structural Applications
16.1 Introduction
16.2 An All-GFRP Footbridge
16.2.1 Materials and Structure
16.2.2 Experimental Setup and Scenarios
16.2.3 Load–Deflection Responses
16.2.4 Longitudinal Strain Distribution Along Specimen Depth
16.2.5 Longitudinal Strain Distribution Along Specimen Width
16.2.6 Conclusions
16.3 GFRP Space Frame
16.3.1 Components and Structure
16.3.2 Experimental Scenarios
16.3.3 Results and Discussion
16.3.4 Conclusions
16.4 GFRP House Frames
16.4.1 Conceptual Design
16.4.2 Structural Analysis
16.4.3 Assembly Process
16.4.4 Further Considerations
16.5 GFRP Modular Retaining Wall
16.5.1 Member Performance
16.5.2 Connection Performance
16.6 Summary
References