Clean Fuels for Mobility

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book provides an overview of clean fuels for sustainable mobility by highlighting on world energy outlook, technic-economic assessment, and the key aspects of the fuel production processes and their possible large impact on various transportation sector segments. The content initially deals with different types of alternative fuels, for example, ethanol, methanol, butanol, hydrogen, biogas, biodiesel, etc. It also focuses on current trends in the automotive sector. Various aspects of the clean fuels production process and formulation to improve the combustion characteristics and efficiency toward sustainability are considered. Some of the important fuels like hydrogen, ammonia, natural gas etc. are discussed in detail. This volume will be useful for the industrial and research community involved in fuels, combustion engines, and environmental research.

Author(s): Gabriele Di Blasio, Avinash Kumar Agarwal, Giacomo Belgiorno, Pravesh Chandra Shukla
Series: Energy, Environment, and Sustainability
Publisher: Springer
Year: 2021

Language: English
Pages: 256
City: Singapore

Preface
Contents
Editors and Contributors
Part I General
1 Introduction to Clean Fuels for Mobility
2 Sustainable Fuels in Private Transportation–Present and Future Potential
2.1 Introduction
2.1.1 Greenhouse Gas Emissions
2.1.2 Global Vehicle Fleet and Its Characteristics
2.2 Direct Fuel Substitutes
2.2.1 Ethanol
2.2.2 Biodiesel
2.3 Other Alternative Fuels
2.3.1 Electricity
2.3.2 Green Hydrogen
2.3.3 Biogas
2.4 Comparison of the Analyzed Alternative Fuels
2.4.1 Travel Economy
2.4.2 Advantages and Disadvantages of Alternative Fuels
2.5 Summary and Conclusions
References
3 Fuels for Sustainable Transport in India
3.1 Introduction
3.1.1 Sustainability and Reliability of a Fuel
3.2 Various Technical Parameters of a Fuel
3.2.1 Physico-chemical Parameters
3.2.2 Ignition Parameters
3.2.3 Safety Parameters
3.3 Alternative Transport Energy Sources in India
3.3.1 Fossil-Based Fuels
3.3.2 Non-fossil Based Fuels
3.4 Futuristic Energy Sources for India
3.4.1 Liquefied Natural Gas (LNG)
3.4.2 Ethanol
3.4.3 Hydrogen
3.5 Discussion
3.6 Conclusion
References
Part II Biofuels for Sustainable Mobility
4 Alternative Refinery Process of Fuel Catalytic Upgrade in Aqueous Media
4.1 Introduction
4.2 Octane Boosters
4.2.1 Historical Overview—Environmental Legislation
4.2.2 Gasoline Ether Oxygenates (GEOs)
4.3 Alternative Fuel Upgrade
4.3.1 Applied Heterogenized Homogeneous Catalysis
4.3.2 Materials and Methods
4.3.3 Results and Discussion
4.4 Conclusions
References
5 Ethanol Derived from Municipal Solid Waste for Sustainable Mobility
5.1 Introduction
5.1.1 Municipal Solid Waste (MSW) Generation and Disposal
5.1.2 Waste to Energy and Mobility Fuel
5.1.3 Objectives
5.2 MSW to Ethanol Conversion
5.3 Methods
5.3.1 Scope and Functional Unit
5.3.2 Waste Composition
5.3.3 Life Cycle Inventory
5.4 Results and Discussion
5.5 Conclusion
References
6 Bioethanol from Wastes for Mobility: Europe on the Road to Sustainability
6.1 Introduction
6.2 Biofuels: Current and Prospective Status
6.2.1 The Biofuel Concept
6.2.2 Biofuels as Main Driving Forces for a Bio-based Economy
6.2.3 The Role of Biofuels in the Transport Sector
6.2.4 EU Policies and Directives on Biofuels
6.2.5 The Evolution of the Biofuels Market
6.3 Bioethanol from Wastes
6.3.1 Cellulosic Ethanol from Wastes: The Current Scenario
6.3.2 Other Unexploited Wastes: The Particular Case of Portugal
6.3.3 Main Challenges Related to the Conversion of Wastes into Cellulosic Ethanol
6.4 Conclusions
References
7 Bio-derived and Waste Fats Use for the Production of Drop-In Fuels
7.1 Introduction
7.2 About the Mechanism of Fats Cracking
7.3 Pyrolytic Conversion of Fatty Acids to Drop-In Fuels
7.3.1 A Concise History of the First Studies on Triglycerides Cracking
7.3.2 Thermals Cracking of Fatty Acids
7.3.3 From Waste to Value: Use of Waste Streams Source for Drop-In Fuels Production via Fats Pyrolysis
7.3.4 Catalytic Upgrading of Thermal Cracked Fats
7.4 Conclusions
References
8 Biodiesel as a Clean Fuel for Mobility
8.1 Introduction
8.2 Sustainability of Biodiesel Engines
8.3 The Power Output in the CI Combustion of Biodiesel
8.4 The Emission Level in the CI Combustion of Biodiesel
8.4.1 PM Emission
8.4.2 NOx Emission
8.4.3 CO Emission
8.4.4 HC Emission
8.5 Biodiesel and Low-Temperature Combustion Engines
8.6 Conclusions
References
Part III Biogas for Sustainable Mobility
9 Ammonia for Decarbonized Maritime Transportation
9.1 Introduction
9.2 Ammonia: History, Production, Properties, and Applications
9.2.1 History of Ammonia as a Fuel
9.2.2 Production of Ammonia
9.2.3 Properties of Ammonia
9.2.4 Ammonia-Fuelled Studies
9.2.5 Ammonia Projects and Industrial Developments
9.3 Discussion
9.3.1 Barriers and Facilitators
9.3.2 Comparison of Promising Alternative Marine Fuels
9.4 Summary
References
10 Biogas as a Sustainable and Renewable Energy Source
10.1 Introduction
10.2 Agricultural Biogas Plants and the Anaerobic Digestion Process
10.2.1 Anaerobic Digestion
10.2.2 Components of a Biogas Plant
10.3 Substrates for Biogas Production
10.3.1 Agricultural Sector
10.3.2 Agri-Food Sector
10.3.3 Innovative Substrates
10.4 Products of the Anaerobic Digestion Process
10.4.1 Biogas
10.4.2 Digestate
10.5 Application of Biogas
10.6 Conclusion
References
11 Natural Gas as a Clean Fuel for Mobility
11.1 Introduction
11.2 Natural Gas in SI Engines
11.2.1 Performance
11.2.2 Emissions
11.3 NG Fuel in the CI Engines
11.3.1 Performance
11.3.2 Emissions
11.4 The NG/Diesel Dual-Fuel Engines
11.4.1 Emissions
11.4.2 NOx
11.4.3 CO
11.4.4 HC
11.4.5 PM
11.5 Conclusions
References