Chemically Deposited Nanocrystalline Metal Oxide Thin Films: Synthesis, Characterizations, and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.

Author(s): Fabian I. Ezema, Chandrakant D. Lokhande, Rajan Jose
Publisher: Springer
Year: 2021

Language: English
Pages: 948
City: Cham

Foreword
Preface
Contents
About the Editors and Contributors
About the Editors
Contributors
Chapter 1: Progress in Solution-Processed Mixed Oxides
1.1 Introduction
1.2 Solution-Processed Methods for Synthesis of Mixed Oxide
1.2.1 Electrodeposition
1.2.2 Successive Ionic Layer Adsorption and Reaction (SILAR)
1.2.3 Precipitation Method
1.2.4 Sol-Gel
1.2.5 Chemical Bath Deposition (CBD)
1.3 Conclusions
References
Chapter 2: Properties and Applications of the Electrochemically Synthesized Metal Oxide Thin Films
2.1 Introduction
2.2 Electrochemical Synthesis
2.3 Electrodeposition of Metal Oxide as Thin Films
2.3.1 Zinc Oxide (ZnO)
2.3.1.1 Applications of ZnO
2.3.2 Copper Oxide (Cu2O)
2.3.2.1 Applications of CuO
2.3.3 Nickel Oxide (NiO)
2.3.3.1 Applications of NiO
2.4 Conclusion
References
Chapter 3: Structural and Electronic Properties of Various Useful Metal Oxides
3.1 Introduction
3.2 Structural and Electronic Properties of Various Metal Oxides
3.2.1 Titanium Dioxide (TiO2): Local-Density Approximation (LDA) Approach
3.2.2 Structural, Cohesive, and Elastic Properties
3.2.3 Electronic Structure
3.3 Anatase TiO2 Nanocrystals
3.3.1 Electronic Properties of Reduced TiO2 Nanocrystals and Stability of Defects
3.4 TiO2 Nanocluster and Dye–Nanocluster Systems: Photovoltaic or Photocatalytic Applications
3.4.1 Methods and Materials
3.4.2 Structural and Electronic Properties of TiO2 Nanocluster and Dye–Nanocluster Systems
3.5 Photoexcited TiO2 Nanoparticles
3.5.1 Structural Properties
3.5.2 Electronic Properties
3.6 Indium Oxide (In2O3)
3.6.1 Structural and Electronic Properties
3.7 Tin(IV) Oxide (SnO2)
3.7.1 Structural and Electronic Properties
3.8 Zinc Oxide (ZnO)
3.8.1 Structural and Electronic Properties
3.9 Copper (I) Oxide (Cu2O), Copper (II) Oxide (CuO), and Copper Dioxide (CuO2) Nanoclusters
3.9.1 Structural and Electronic Properties
3.10 Conclusion
References
Chapter 4: Properties of Metal Oxides: Insights from First Principles Calculations
4.1 Introduction
4.2 An Example System: BaTiO3
4.3 Summary
References
Chapter 5: Recent Progress in Metal Oxide for Photovoltaic Application
5.1 Introduction
5.2 Solar Cells for Photovoltaic Applications
5.3 Solar Cell Output Parameters
5.3.1 Short-Circuit Current (Isc)
5.3.2 Open-Circuit Voltage (Voc)
5.3.3 Fill Factor (FF)
5.3.4 Solar Cell Efficiency
5.4 Oxides
5.5 Methods of Synthesizing Metal Oxides for Photovoltaic Application
5.5.1 Hydrothermal/Solvothermal Approach
5.5.2 Thermal Evaporation
5.5.3 Sputtering Deposition
5.5.4 Coprecipitation
5.5.5 Physical Vapor Deposition
5.5.6 Chemical Vapor Deposition
5.5.7 Sol-Gel Approach
5.6 Organic Metal Oxide for Photovoltaic Application
5.6.1 Generation of Exciton in Metal Oxides for Photovoltaic Application
5.6.2 Exciton Diffusion and Dissociation in Metal Oxides
5.6.3 Carrier Transport in Metal Oxide Semiconductors
5.6.4 Extraction of Charges at the Electrodes
5.7 Inorganic Metal Oxide for Photovoltaic Applications
5.7.1 Contributions of Various Inorganic Metal Oxides for the Development of Photovoltaic Cells
5.7.2 Efficiency of Inorganic Photovoltaic Solar Cells Made from Metal Oxides
5.7.3 Hybrid Metal Oxides as Active Materials for Photovoltaic Application
5.7.3.1 Hybrid Perovskite Solar Cells
5.7.3.2 Dye-Sensitized Solar Cells (DSSCs)
5.8 Active Metal Oxide Roles in Photovoltaic Cells
5.8.1 Transparent Electrodes
5.8.2 Charge-Blocking Layers
5.8.3 Charge Collectors
5.8.4 Optical Spacers
5.8.5 Intermediate Layers in Tandem Cells
5.8.6 Stability Enhancers
5.9 Review of Some Metal Oxide Materials Used for Photovoltaic Application
5.10 Conclusion
References
Chapter 6: Structural and Electronic Properties of Metal Oxides and Their Applications in Solar Cells
6.1 General Introduction
6.2 Structural Properties of Metal Oxides
6.3 Electronic Properties of Metal Oxides
6.4 Application of Some Transition Metal Oxides in Solar Cells
6.4.1 Titanium Dioxide, TiO2
6.4.2 Nickel Oxide, NiO
6.4.3 Manganese Oxide, MnO2
6.4.4 Cerium Oxide, CeO2
6.4.5 Cobalt Oxide, CoO
6.4.6 Molybdenum Oxide, MoO3
6.5 Charge Transport Mechanism in Metal Oxide/Silicon Solar Cells
6.6 Methods of Improving the Efficacy of Transition Metal Oxides
6.6.1 Addition of Dopant
6.6.2 Formation of Composites
6.6.3 Heat/Plasma Treatment
6.6.4 Electroplating
6.7 Conclusion
References
Chapter 7: Optically Active Metal Oxides for Photovoltaic Applications
7.1 Introduction
7.2 Structure of Thin-Film Solar Cells
7.2.1 Ideal Material Properties Requirement in Thin-Film Solar Cells
7.3 Metal Oxides in Solar Cells
7.4 Application of Metal Oxides in Thin-Film Solar Cells
7.4.1 Metal Oxides as Back Contact and Intermediate Barrier Layers in Thin-Film Solar Cells
7.4.2 Metal Oxides as Absorber Layers in Thin-Film Solar Cells
7.4.3 Metal Oxides as Buffer Layers in Thin-Film Solar Cells
7.4.4 Metal Oxides as TCO Layers in Thin-Film Solar Cells
7.5 Techniques for the Synthesis of Metal Oxides in Thin-Film Solar Cells
7.6 Challenges and Future Scope
References
Chapter 8: Metal Oxides for Perovskite Solar Cells
8.1 Introduction
8.2 Perovskite Solar Cells
8.2.1 Working Principle
8.2.2 Bandgap Tuning of Perovskite Materials
8.2.2.1 Architecture of Perovskite Solar Cells
8.3 Metal Oxides
8.3.1 ETL
8.3.2 TiO2
8.3.3 SnO2
8.3.4 WO3
8.3.5 ZnO
8.3.6 Nb2O5
8.3.7 HTL
8.3.8 NiOx
8.3.9 CuOx
8.3.10 Ternary Oxides
8.3.11 Issues with Metal Oxides
8.4 Conclusions
References
Chapter 9: Doped Metal Oxide Thin Films for Dye-Sensitized Solar Cell and Other Non-Dye-Loaded Photoelectrochemical (PEC) Solar Cell Applications
9.1 Introduction
9.2 Using Doping as an Effective Method to Engineer Key Properties of ZnO for Enhanced Energy Harvesting
9.3 Impacts of Al Impurities on Zinc Oxide Properties
9.3.1 Structural Studies
9.3.2 Optical Studies
9.3.3 Morphological Studies
9.4 The Impact of Al-Doped ZnO (AZO) Electrodes on Dye-Sensitize Solar Cell (DSSC) Performance
9.5 Effects of Indium Dopant on ZnO Properties
9.5.1 Film Thickness Studies
9.5.2 Structural Studies
9.5.3 Optical Studies
9.5.4 Morphological Studies
9.5.5 Surface Wettability Studies
9.6 The Impact of In-Doped ZnO (IZO) Electrodes on PEC Solar Cell Performance
9.7 Conclusions
References
Chapter 10: Doped Metal Oxide Thin Films for Enhanced Solar Energy Applications
10.1 Introduction
10.2 History of Photovoltaics
10.3 Photovoltaic Technology
10.3.1 Working Principle of a Conventional Silicon Photovoltaic Cell
10.3.2 Photovoltaic Cell Performance Characterization
10.3.3 Solar Cells
10.3.3.1 Short-Circuit Current (Isc)
10.3.3.2 Open-Circuit Voltage (Voc)
10.3.3.3 Fill Factor (FF)
10.3.3.4 Conversion Efficiency
10.4 Thin-Film Technology
10.4.1 Doping of Thin Films
10.4.2 Doped Metal Oxide Solar Cell
10.4.2.1 Cobalt Oxide (Co3O4)
10.4.2.2 Titanium Dioxide (TiO2)
10.4.2.3 Copper Oxide (Cu2O or CuO)
10.4.2.4 Ternary Materials
10.5 Conclusion
References
Chapter 11: Mixed Transition Metal Oxides for Photoelectrochemical Hydrogen Production
11.1 Introduction
11.2 Basic Principles of PEC Water Splitting
11.3 Factors Affecting the Water Splitting Performance
11.3.1 Bandgap of Photoelectrode Materials
11.3.2 Particle Size of Photoelectrode Materials
11.3.3 Degree of Crystallinity
11.3.4 Dimensions and Surface Areas of Electrode Materials
11.3.5 Stability of Photoelectrodes
11.3.6 Light Source
11.3.7 pH of the Electrolyte
11.4 Transition Metal Oxides
11.4.1 Classification of Transition Metal Oxides
11.4.2 Mixed Transition Metal Oxides
11.4.3 Mixed Transition Metal Oxides for Hydrogen Evolution Reaction
11.4.4 Mixed Transition Metal Oxides for Oxygen Evolution Reaction
11.5 Design, Synthesis, and Characterization of Mixed Transition Metal Oxides
11.6 Concluding Remarks
References
Chapter 12: Plasmonic Metal Nanoparticles Decorated ZnO Nanostructures for Photoelectrochemical (PEC) Applications
12.1 Introduction
12.2 Versatility of ZnO
12.2.1 Phenomenal Crystal Structure of ZnO
12.2.2 Suitability of ZnO for PEC
12.2.3 Morphological Variation of ZnO and Their PEC Performance
12.2.3.1 Enhanced Light Harvesting
12.2.3.2 Localized Surface Plasmon Resonance (LSPR)
12.2.3.3 Charge Transport and Separation at Interfaces
Interfaces Inside Photoelectrodes
Plasmonic Metal Nanoparticle/ZnO/Semiconductor
Photoelectrodes and Electrolytes Interfaces
12.3 Anti-Photocorrosion
12.4 Decoration Vs. Doping
12.5 Outlook and Frontiers
References
Chapter 13: Oxygen-Deficient Metal Oxide Nanostructures for Photocatalytic Activities
13.1 Introduction
13.2 Methods for Introducing Oxygen Vacancies in Metal Oxide Nanostructures
13.2.1 Doping of Elements
13.2.2 Chemical Reduction/Oxidation
13.2.3 Electrochemical Reduction
13.2.4 Metal Reduction
13.2.5 Hydrogenation of the Metal Oxide
13.2.6 Annealing in Oxygen-Deficient Environment
13.2.7 High-Energy Particle Bombardment
13.3 Spectroscopic Studies for the Evaluation of Charge Carrier Dynamics
13.3.1 Time-Resolved Transient Absorption (TA) Spectroscopy
13.3.2 Time-Resolved Fluorescence Spectroscopy (TRFS)
13.3.3 Soft and Hard X-Ray Spectroscopy
13.4 Photocatalytic Applications of Oxygen-Deficient Metal Oxide Thin Films
13.4.1 Photocatalytic Water Splitting
13.4.2 Photoreduction of Carbon Dioxide (CO2)
13.4.3 Photodegradation of Organic Pollutant
13.5 Conclusions and Future Outlook
References
Chapter 14: Oxygen-Deficient Iron Oxide Nanostructures for Photocatalytic Activities
14.1 Introduction
14.2 Iron Oxide Nanostructures as Photocatalysts
14.3 Methods of Preparation of Oxygen-Deficient Iron Oxide Nanostructures
14.3.1 Solvothermal/Hydrothermal Synthesis
14.3.2 Chemical Reductants
14.3.3 Calcination: Vacuum Activation
14.3.4 Sol-Gel Processing
14.3.5 Chemical Precipitation Method
14.3.6 Anodization Method
14.3.7 Vapour Deposition Method
14.3.8 Spray Pyrolysis Method
14.4 Photocatalysis
14.4.1 Photocatalytic Water Splitting for Hydrogen Generation
14.4.2 Photocatalytic Degradation
14.4.3 CO2 Reduction
14.5 Challenges and Opportunities
References
Chapter 15: Properties of Titanium Dioxide-Based Nanostructures on Transparent Glass Substrates for Water Splitting and Photocatalytic Application
15.1 Introduction
15.2 Methods of Synthesis for the Development of Titanium Dioxide Nanostructures on Conductive Transparent Substrates
15.2.1 Hydrothermal Method
15.2.2 Precursors
15.3 Development, Formation Mechanism and Physical Properties of Titanium Dioxide-Based Nanostructures Developed on Transparent Glass Substrates by Hydrothermal Method
15.3.1 Synthesis
15.3.2 Effect of Hydrothermal Growth Time on the Orientation and Size of Nanostructures with Respect to Substrate
15.4 Structural Properties of a Single Rutile-Phase TiO2 Rod
15.5 Conclusion
References
Chapter 16: Mixed Transition Metal Oxides for Energy Applications
16.1 Introduction
16.2 Fundamentals of Energy Storage Devices
16.2.1 Supercapacitor as Energy Storage Device
16.2.2 Basic Structure of Supercapacitors and Physical Phenomenon
16.2.3 Types of Supercapacitors
16.3 Lithium-Ion Battery (LIB) as Energy Storage Device
16.3.1 Basic Structure of LIB and Physical Phenomenon
16.4 Requirements of Good Energy Storage Material
16.4.1 Features of MTMO Influencing Electrochemical Performance
16.4.2 Specific Features of MTMOs for Efficient LIB Cell
16.5 Synthesis Strategy for MTMO by Chemical Methods
16.5.1 Chemical Bath Deposition (CBD) Method
16.5.2 Successive Ionic Layer Adsorption and Reaction (SILAR) Method
16.5.3 Hydrothermal Method
16.5.4 Spin Coating Method
16.5.5 Sol-Gel Method
16.5.6 Summary of Synthesis Approaches
16.6 MTMO-Based Energy Storage Materials
16.7 Supercapacitor Electrode Materials
16.7.1 MTMO-Based Supercapacitors
16.8 MTMO-Based Anode Materials for LIB
16.9 Conclusions
References
Chapter 17: Nanosheet-Derived Porous Materials and Coatings for Energy Storage Applications
17.1 Introduction
17.2 Nanosheets
17.2.1 Synthetic Approaches for 2D Inorganic Nanosheets
17.2.1.1 Intercalation
17.2.1.2 Protonation
17.2.1.3 Ion Exchange
17.2.1.4 Successive Aqueous Sonication or Exfoliation
17.3 Nanosheet-Based Hybrids
17.3.1 Properties of Nanosheets and Nanosheet-Based Hybrids
17.3.1.1 Anisotropic Morphology and Flexibility
17.3.1.2 Extremely Small Thickness
17.3.1.3 Photoinduced Surface Functionality
17.3.1.4 Flexibility of Composition Control
17.3.1.5 Surface Charge
17.3.1.6 Expanded Surface Area
17.4 Synthetic Strategies for 2D Nanosheet-Based Hybrids
17.4.1 Ion Exchange or Intercalation
17.4.2 Anchored Assembly
17.4.3 Layer-by-Layer (LBL) Film Deposition
17.4.4 Exfoliation Reassembling (ER)
17.5 Application to Supercapacitors
17.5.1 Requirements of Nanosheets as Electrode Materials
17.5.2 Recent Work on Nanosheet-Based Materials for Supercapacitors
17.6 Application to Batteries
17.6.1 Requirements of Nanosheets as Electrode Materials
17.6.2 Working of Rechargeable Battery
17.6.3 Recent Work on Nanosheet-Based Materials for Batteries
17.7 Summary
References
Chapter 18: Role of Carbon Derivatives in Enhancing Metal Oxide Performances as Electrodes for Energy Storage Devices
18.1 Introduction
18.2 Energy Storage Devices
18.2.1 Battery
18.2.1.1 Battery Electrode Materials
18.2.2 Supercapacitor
18.2.2.1 Types of Supercapacitors
18.3 Metal Oxides
18.3.1 Cobalt Oxide (Co3O4)
18.3.2 Manganese Oxide (MnO2)
18.3.3 Nickel Oxide (NiO)
18.3.4 Copper Oxide (CuO)
18.3.5 Zinc Oxide (ZnO)
18.4 Carbon Derivatives
18.4.1 Graphene Oxide (GO)
18.4.2 Reduced Graphene Oxide (rGO)
18.4.3 Carbon Nanotubes (CNTs)
18.4.4 Activated Carbon (AC)
18.4.5 Carbon-Derived Carbon (CDC)
18.4.6 Carbon Aerogels (CAs)
18.5 Exceptional Selected Results
18.6 Conclusion
References
Chapter 19: Hydrothermal Synthesis of Metal Oxide Composite Cathode Materials for High Energy Application
19.1 Introduction
19.2 Hydrothermal Synthesis (HS) Apparatus
19.3 Hydrothermal Synthesis (HS) of Metal Oxide Composite
19.3.1 Batch Hydrothermal Reaction System
19.3.2 Flow Hydrothermal Reaction System
19.4 Metal Oxide Composite Cathode Materials for High Energy Density Storage
19.5 Solvents Under Hydrothermal Synthesis (HS)
19.6 Hydrothermal Synthesis of NaFe2O3-GO
19.6.1 Experiment
19.6.2 Characterization and Testing of NaFe2O3-GO
19.7 The Future of the Hydrothermal Synthesis Method
19.8 Conclusions
References
Chapter 20: Metal Oxide Composite Cathode Material for High Energy Density Batteries
20.1 Introduction
20.2 Performance Indicator of Secondary Batteries
20.3 Storage Mechanisms in Li-Ion Batteries
20.4 Crystal Structures of Cathode Materials
20.5 Composite Materials as Cathode for Li-Ion Batteries
20.5.1 Layered LiCoxNi1−xO2
20.5.2 Layered LiNixMn1−xO2
20.5.3 Spinel LiNixMn2−xO4
20.5.4 Layered LiNixCoyMn1−x−yO2
20.5.5 Conversion-Type Cathode for Secondary Batteries
20.6 From Monovalent to Multivalent Secondary Batteries
20.7 Challenges
20.8 Conclusion and Outlooks
References
Chapter 21: Chemically Processed Transition Metal Oxides for Post-Lithium-Ion Battery Applications
21.1 Introduction
21.2 Transition Metal Oxides for Non-aqueous Sodium/Sodium-Ion Batteries
21.2.1 Titanium Oxide (TiO2)
21.2.2 Vanadium Oxide (V2O5)
21.2.3 Chromium Oxide (Cr2O7)
21.2.4 Manganese Oxide (MnO)
21.2.5 Iron Oxide (Fe2O3)
21.2.6 Cobalt Oxide (Co3O4)
21.2.7 Nickel Oxide (NiO)
21.2.8 Cupric Oxide (CuO)
21.2.9 Molybdenum Oxide (MoO3)
21.3 Transition Metal Oxides for Non-aqueous Potassium/Potassium-Ion Batteries
21.3.1 Titanium Oxide (TiO2)
21.3.2 Cobalt Oxide and Iron Oxide (Co3O4-Fe2O3)
21.3.3 Cupric Oxide (CuO)
21.3.4 Molybdenum Oxide (MoO2)
21.4 Transition Metal Oxides for Other Non-aqueous Multivalent Ion Batteries
21.4.1 TMOs in Magnesium Metal Batteries
21.4.2 TMOs in Calcium Metal Batteries
21.4.3 TMOs in Zinc Metal Batteries
21.4.4 TMOs in Aluminum Metal Batteries
21.5 Summary and Perspectives
References
Chapter 22: Nanostructured Metal Oxide-Based Electrode Materials for Ultracapacitors
22.1 Introduction
22.2 Components of Supercapacitor
22.2.1 Electrode
22.2.2 Electrolyte
22.2.3 Current Collectors
22.2.4 Separator
22.2.5 Sealant
22.3 Fundamentals of Supercapacitance
22.3.1 Electric Double-Layer Capacitors (EDLCs)
22.3.2 Redox Processes
22.3.3 Assessing the Electrochemical Mechanism of a Working (Active) Electrode
22.4 Electrode Preparation Techniques
22.4.1 Preparation of MOx Nanostructures Using Liquid-Based Techniques
22.4.1.1 Hydrothermal
22.4.1.2 Advantages of Hydrothermal Synthesis Over Other Methods
22.4.1.3 Electrochemical Deposition
22.4.1.4 Advantages of Electrochemical Deposition
22.4.1.5 Aqueous Solution Deposition
22.4.1.6 Advantages of Aqueous Solution-Based Deposition
22.4.2 Nanoporous MOx from Metal-Organic Frameworks (MOFs)
22.5 Performances of Metal Oxide Supercapacitor Electrode
22.6 Applications of Supercapacitor
22.6.1 Electric Vehicle (EV)
22.6.2 Electric Rail Transit System
22.6.3 Mobile Device
22.6.4 Memory Device
22.6.5 Wearable Electronic Device
22.6.6 Micro-Grid
22.6.7 Chemi-Resistive pH Sensing
22.7 Outlook and Summary of Nanoporous Metal Oxide-Based Supercapacitors
References
Chapter 23: Nanoporous Metal Oxides for Supercapacitor Applications
23.1 Introduction to Nanoporous Metal Oxides
23.2 Synthetic Approach for Nanoporous Metal Oxides
23.2.1 Template Synthesis Methods
23.2.1.1 Hard Template Method
23.2.1.2 Soft Template Method
23.2.2 Chemical Methods for Synthesis of Nanoporous Metal Oxides
23.2.2.1 Hydrothermal (Solvothermal) Method
23.2.2.2 The Chemical Bath Deposition Method
23.2.2.3 Electrochemical Deposition Method
23.2.2.4 Sol Gel Method
23.3 A Newer Approach for Nanoporous Metal Oxides for Supercapacitor Application
23.3.1 Advantages of Chemical Methods
23.3.2 Toward the Commercialization of Nanoporous Metal Oxides
References
Chapter 24: Nanoporous Transition Metal Oxide-Based Electrodes for Supercapacitor Application
24.1 Introduction
24.2 Fundamentals of Supercapacitor
24.2.1 Electrochemical Double-Layer Capacitive Materials
24.2.2 Pseudocapacitive Materials
24.2.3 Intrinsic or Surface Redox Pseudocapacitive Materials
24.2.4 Intercalation Pseudocapacitive Materials
24.2.5 Extrinsic Pseudocapacitive Materials
24.2.6 Hybrid Supercapacitive Materials
24.3 Nanoporous Transition Metal Oxides: Pseudocapacitive Electrodes
24.4 Nanoporous Transition Metal Oxide-Based Electrode Materials for Supercapacitor
24.4.1 Ruthenium Oxide
24.4.2 Manganese Oxide
24.4.3 Nickel Oxide
24.4.4 Copper Oxide
24.4.5 Cobalt Oxide
24.4.6 Vanadium Oxide
24.4.7 Iron Oxide
24.4.8 Bismuth Oxide
24.5 Rare-Earth Metal Oxide
24.6 Summary, Perspective, and Conclusions
References
Chapter 25: Hybrid Nanocomposite Metal Oxide Materials for Supercapacitor Application
25.1 Introduction
25.2 Types of Hybrid Nanocomposite Metal Oxides
25.2.1 Ruthenium Oxide-Based Nanocomposites
25.2.1.1 Ruthenium Oxide/Reduced Graphene Oxide Hybrid Nanocomposite Materials
25.2.1.2 Ruthenium Oxide/Tin Oxide Hybrid Nanocomposite Materials
25.2.1.3 Ruthenium Oxide/Titanium Dioxide Hybrid Nanocomposite Materials
25.2.2 Manganese Oxide-Based Nanocomposites
25.2.2.1 Manganese Oxide/Reduced Graphene Oxide Hybrid Nanocomposite Materials
25.2.2.2 Manganese Oxide/Tin Oxide Nanocomposite Materials for Supercapacitors
25.2.2.3 Manganese Oxide/Nickel Oxide Nanocomposite Materials for Supercapacitors
25.2.3 Cobalt-Oxide Based Nanocomposites for Supercapacitors
25.2.3.1 Cobalt Oxide/Reduced Graphene Oxide Nanocomposite Materials for Supercapacitors
25.2.3.2 Cobalt Oxide/Manganese Oxide Nanocomposite Materials for Supercapacitors
25.2.3.3 Cobalt Oxide/Copper Oxide Nanocomposite Materials for Supercapacitors
25.2.4 Nickel Oxide-Based Nanocomposites for Supercapacitors
25.2.4.1 Nickel Oxide/Reduced Graphene Oxide Nanocomposite Materials for Supercapacitors
25.2.4.2 Nickel Oxide/Titanium Dioxide Nanocomposite Materials for Supercapacitors
25.2.4.3 Nickel Oxide/Cobalt Oxide Nanocomposite Materials for Supercapacitors
25.3 Conclusion
References
Chapter 26: Liquid Phase Deposition of Nanostructured Materials for Supercapacitor Applications
26.1 Introduction
26.2 Deposition Method: Liquid Phase Deposition (LPD)
26.3 Materials Deposited by LPD as the Electrode Material for Supercapacitors
26.3.1 Iron Oxide
26.3.2 Copper Oxide
26.3.3 Layered Double Hydroxides (LDHs)
26.4 Conclusions
References
Chapter 27: Chemically Processed Metal Oxides for Sensing Application: Heterojunction Room Temperature LPG Sensor
27.1 Introduction
27.2 Types of Gas Sensors
27.3 Chemical Methods
27.3.1 Advantages of Chemical Methods
27.4 Experimental Setup: Design and Operation
27.4.1 Device Construction
27.4.2 Device Testing
27.4.3 LPG Testing and Performance
27.4.4 Gas Response: Current-Voltage (I-V) Characteristics
27.4.5 Gas Response vs. Gas Concentration
27.4.6 Gas Response vs. Time
27.4.7 Stability Studies
27.4.8 Gas Selectivity
27.4.9 EIS Studies
27.5 Mechanism of LPG Sensor
27.5.1 Isotype Heterojunction Based
27.5.1.1 n-n Junction
27.5.1.2 p-p Junction
27.5.2 Anisotype Heterostructure Based
27.6 Material Requirements for LPG Sensor
27.6.1 Substrate
27.7 Heterojunction (Both Isotype and Anisotype) Partners
27.7.1 Material Type
27.7.2 Structure and Morphology
27.7.3 Porosity/Surface Area
27.7.4 Energy Band Alignment
27.7.5 Contacts
27.7.5.1 Conductivity
27.7.6 Work Function
27.8 Review of Chemically Deposited Heterojunction: LPG Sensors
27.9 Limitations and Future Prospects
27.10 Summary
References
Chapter 28: Chemically Synthesized Novel Materials for Gas-Sensing Applications Based on Metal Oxide Nanostructure
28.1 Introduction
28.2 Classification of Gas Sensors
28.3 Gas Sensor Performance
28.4 Mechanism of Gas Sensing
28.5 Growth of Metal Oxide Chemical Sensors
28.6 Some Novel Metal Oxides-Based Gas Sensors
28.6.1 Tin Oxide (SnO2)-Based Gas Sensors
28.6.2 Zinc Oxide-Based Gas Sensor
28.6.3 Other Metal Oxide-Based Gas Sensors
28.7 Conclusion
References
Chapter 29: Low-Temperature Processed Metal Oxides and Ion-Exchanging Surfaces as pH Sensor
29.1 Introduction
29.2 How Do Electrochemical pH Sensors Work?
29.2.1 Basic Approach to Electrochemical pH Sensing Concept of Electrode Potential
29.2.2 Nernst Relationship and the Nernstian Behavior
29.2.3 Classification of Electrochemical pH Sensors
29.2.4 Metal Oxide Electrode-pH-Sensing Mechanism: How Are Metal Oxides Adapted for Ion Exchange?
29.3 Fabrication of Metal Oxide Electrode for pH Sensors
29.3.1 Electrodeposition
29.3.2 Sputtering
29.3.3 Hydrothermal
29.3.4 Spin Coating
29.3.5 Sol–Gel
29.3.6 Chemical Bath Deposition (CBD)
29.3.7 SILAR
29.4 Measure of pH Performance
29.4.1 Response Time (t90)
29.4.2 Selectivity/Interference Effect
29.4.3 Hysteresis Effect
29.4.4 Drift Effect
29.4.5 Sensitivity/Nernstian Response
29.4.6 Reversibility
29.4.7 Temperature Coefficient of Sensitivity (TCS)
29.5 Overview of Various MOx for pH Sensor Application
29.5.1 Ruthenium Oxide (RuOx) pH Sensors
29.5.2 Iridium Oxide (IrOx) pH Sensors
29.5.3 Tungsten Oxide (WO3) pH Sensors
29.5.4 Titanium Oxide (TiO2) pH Sensor
29.5.5 Tantalum Oxide (Ta2O5) pH Sensors
29.5.6 Zinc Oxide (ZnO) pH Sensor
29.6 Conclusion
References
Chapter 30: Performance Evaluation of P-Type Semiconducting Metal Oxide-Based Gas Sensors
30.1 Introduction
30.2 Gas-Sensing Mechanism of P-Type SMOs
30.2.1 Electron Interactions
30.2.2 Band Bending
30.2.3 Resistance Modification
30.3 Performance of P-Type SMO Gas Sensors
30.3.1 Cobalt Oxide (Co3O4)
30.3.2 Nickel Oxide (NiO)
30.3.3 Copper Oxide (Cu2O or CuO)
30.3.4 Manganese Oxide (MnO2)
30.4 Types of Gases Detectable by P-Type SMO Gas Sensor
30.4.1 Nitrogen Oxide (NO2) Gas
30.4.2 Hydrogen Sulphide (H2S) Gas
30.4.3 Ammonia (NH3) Gas
30.4.4 Sulphur Oxide (SO2) Gas
30.4.5 Carbon Dioxide (CO2) Gas
30.4.6 Carbon Monoxide (CO) Gas
30.5 Conclusions
References
Chapter 31: Development of InSb Nanostructures on GaSb Substrate by Metal-Organic Chemical Vapour Deposition: Design Considerations and Characterization
31.1 Introduction and Motivation
31.2 Historical Background of MOCVD Technique
31.3 MOCVD System Design and Working Mechanism
31.4 Conceptualization and Theoretical Background
31.4.1 Lattice Mismatch
31.4.2 Quantum Confinement Effect
31.5 MOCVD Growth Parameters
31.5.1 V/III Ratio
31.5.2 Growth Temperature
31.5.3 Reactor Pressure
31.5.4 Molar Flow Rate and Growth Rate
31.5.5 Substrate Orientation
31.6 Design Considerations for Semiconductor Nanostructures
31.6.1 Influence of Strain on the Electronic Structure of a Quantum Dot
31.6.2 Size and Aspect Ratio Effect on the Optical Properties of a Quantum Dot
31.7 Experimental Technique and Deposition Process
31.8 Results and Discussion
31.8.1 SPM and SEM Analysis
31.8.2 Photoluminescence Spectroscopy Measurements
31.8.3 TEM Analysis
31.8.4 Simulation of the Effect of Spacer Layer Thickness on the Band Edge Emission and Energy Levels of InGaSb/GaSb Quantum Wells
31.8.5 Conclusion
References
Index