Bipedal Robots: Modeling, Design and Walking Synthesis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such as?passive walking and gait synthesis performed using optimization technique. Control based on the robot modeling, neural network methods, or intuitive approaches are presented. The unilaterality of contact is dealt with using on-line adaptation of the desired motion.

Author(s): Christine Chevallereau
Edition: 1
Year: 2009

Language: English
Pages: 328

Bipedal Robots: Modeling, Design and Walking Synthesis......Page 5
Table of Contents......Page 7
1.1. Introduction......Page 11
1.2.1. Biomechanical system: a source of inspiration......Page 12
1.2.2. Skeletal structure and musculature......Page 19
1.3.1. Architecture......Page 21
1.3.2. Walking and running trajectory data......Page 23
1.3.3. Study cases......Page 28
1.4.1. A brief history......Page 31
1.4.2. Japanese studies and creations......Page 34
1.4.3. The situation in France......Page 37
1.4.4. General evolution tendencies......Page 41
1.5. Different applications......Page 42
1.5.1. Service robotics......Page 43
1.5.3. Toy robots and computer animation in cinema......Page 45
1.5.4. Defense robotics......Page 47
1.5.5. Medical prostheses......Page 49
1.6. Conclusion......Page 50
1.7. Bibliography......Page 51
2.1. Introduction......Page 57
2.2.1. DoF of the locomotion system......Page 58
2.2.2. Walking patterns......Page 59
2.2.3. Generalized coordinates for a sagittal step......Page 63
2.2.4. Generalized coordinates for three-dimensional walking......Page 67
2.2.5. Transition conditions......Page 76
2.3. The dynamics of walking......Page 80
2.3.1. Lagrangian dynamic model......Page 81
2.3.2. Newton-Euler’s dynamic model......Page 97
2.3.3. Impact model......Page 108
2.4.1. CoP and equilibrium constraints......Page 113
2.4.2. Non-sliding constraints......Page 126
2.5. Complementary feasibility constraints......Page 127
2.5.1. Respecting the technological limitations......Page 128
2.5.2. Non-collision constraints......Page 129
2.7. Bibliography......Page 133
3.1. Introduction......Page 137
3.2. Study of influence of robot body masses......Page 138
3.2.1. Case 1: the three-link robot......Page 139
3.2.2. Case 2: the five-link robot......Page 157
3.3.1. The structure of planar robots......Page 175
3.3.2. 3D robot structures......Page 178
3.3.3. Technology of inter-body joints......Page 182
3.3.4. Drive technology......Page 184
3.4.1. Actuator types......Page 191
3.4.2. Characteristics of electric actuators......Page 196
3.4.3. Elements of choice for robotic actuators......Page 200
3.4.4. Comparing actuator performances......Page 203
3.4.5. Performances of transmission-actuator associations......Page 212
3.5.1. Measuring......Page 217
3.5.2. Frequently used sensors......Page 218
3.5.3. Characteristics and integration......Page 219
3.5.4. Sensors of inertial localization......Page 220
3.6. Conclusion......Page 222
3.7.2. Dynamic model......Page 223
3.8. Bibliography......Page 225
4.1. Introduction......Page 229
4.2.1. Passive walking......Page 230
4.2.2. Quasi-passive dynamic walking......Page 232
4.3. Static balance walking......Page 237
4.4.1. Performance criteria for walking synthesis......Page 238
4.4.2. Formalizing the problem of dynamic optimization......Page 242
4.5. Walking synthesis via parametric optimization......Page 246
4.5.1. Approximating the control variables......Page 247
4.5.2. Parameterizing the configuration variables......Page 248
4.5.3. Parameterizing the Lagrange multipliers......Page 256
4.5.4. Formulation of the parametric optimization problem......Page 260
4.5.5. A parametric optimization example......Page 265
4.6. Conclusion......Page 271
4.7. Bibliography......Page 272
5.1. Introduction......Page 277
5.2. Hybrid systems and stability study......Page 279
5.3.1. Computed torque control......Page 283
5.4.1. General principle......Page 292
5.4.2. The ZMP’s imposed evolution......Page 295
5.4.3. Bounded evolution of the ZMP......Page 302
5.5. Taking an under-actuated phase into account......Page 306
5.6. Taking the double support phase into account......Page 311
5.7.1. Intuitive methods......Page 316
5.7.2. Neural network method......Page 321
5.8. Passive movements......Page 328
5.9. Conclusion......Page 332
5.10. Bibliography......Page 333
Index......Page 337