Biobased Nanotechnology for Green Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Investigation on biobased nanomaterials has provided new insights into the rapidly advancing fields of the biomedical and environmental sciences by showing how these nanomaterials are effective in biomedicine and environmental remediation. These particles hold tremendous prospective applications, and are likely to become the next generation of particles in these areas. As such, research is ongoing and the data generated should have the potential for a sustainable future in both the environmental and biomedical fields.

This book presents important findings on the role of and identification of novel applications of biobased nanomaterials. Unlike other books in this field, this book focuses entirely on sustainable application and remediation in biomedicine and environmental science. The chapters are written in such a way as to make them accessible to the reader, and furthermore, the volume can be readily adopted as a reference, or used as a guide for further research.

This project was based on recent research (the last 5 years) and developed through an extensive literature search. The editors have also compiled some advanced, outstanding texts that should be of benefit to graduate students in their research.


Author(s): Hemen Sarma, Sanket J. Joshi, Ram Prasad, Josef Jampilek
Series: Nanotechnology in the Life Sciences
Publisher: Springer
Year: 2021

Language: English
Pages: 688
City: Singapore

Preface
Contents
Editors and Contributors
About the Editors
Contributors
Chapter 1: Nanotechnology for Green Applications: How Far on the Anvil of Machine Learning!
1 Introduction
2 Issues Intrinsic to Nanomaterials
2.1 Composition
3 Main Constituents in Composition
4 Additives in Composition
5 Impurities in Composition
5.1 Synthesis Approach
5.2 Intrinsic and Extrinsic Properties
5.3 Toxicity
5.4 Stability
6 Efficacy of Nanomaterial (Enm) and Ensemble Heterogeneity (he)—Defining and Analyzing
7 Machine Learning and Nanomaterials
7.1 Machine Learning Applications
7.1.1 Support Vector Machine
7.1.2 Artificial Neural Network (ANN)
7.1.3 Decision Tree Algorithms
7.1.4 Random Forest Algorithms
7.1.5 Convolutional Neural Network (CNN)
8 Life Cycle Assessment (LCA) of Nanomaterials
8.1 Essentiality and Challenges
8.2 Basic Life Cycle Analysis (LCA) Framework and Improvement for Emerging Technology
8.3 Recent Development in the Application of LCA for Nanomaterials
9 Conclusion
References
Part I: Nanotechnology for Green Applications
Chapter 2: Copper- and Iron-Based Bio-Nanocomposites for Green Applications
1 Introduction
2 Application of Copper and Iron-Based Bio-Nanocomposites
2.1 Antibacterial Applications
2.1.1 Antibacterial Application of Copper-Based Bio-Nanocomposites
2.1.2 Antibacterial Activity of Iron-Based Bio-Nanocomposites
2.2 Antifungal Applications
2.3 Application in Medical Field
2.3.1 Medical Application of Copper-Based Bio-Nanocomposites
2.3.2 Medical Application of Iron-Based Bio-Nanocomposites
2.4 Packaging Applications
2.4.1 Packaging Applications of Copper-Based Bio-Nanocomposites
2.4.2 Packaging Application of Iron-Based Bio-Nanocomposite
2.5 Catalysis
2.5.1 Catalysis Application of Copper-Based Bio-Nanocomposites
2.5.2 Catalysis Applications of Iron-Based Bio-Nanocomposites
2.6 Water Purification
2.6.1 Water Purification Using Copper-Based Bio-Nanocomposite
2.6.2 Water Purification Based on Iron-Based Bio-Nanocomposites
2.7 Sensor
2.7.1 Copper-Based Bio-Nanocomposite in Sensor Application
2.7.2 Iron-Based Bio-Nanocomposite in Sensor Application
3 Conclusions
References
Chapter 3: Current Aspects of Nanotechnology: Applications in Agriculture
1 Introduction
2 Sources of Nanomaterials
2.1 Natural Nanomaterials
2.2 Incidental Nanomaterials
2.3 Engineered Nanomaterials
3 Different Forms of Nanomaterials Applied in Agriculture
3.1 Nanocarriers
3.2 Nanotubes
3.3 3.3 Nanosensors
3.4 Nanocapsules
3.5 Nanoclays
3.6 Nanocomposites
3.7 Nanofibers
4 Applications of Nanotechnology in Agriculture
4.1 Precision Agriculture
4.2 Smart Farming
4.3 Delivery of Chemicals, Pesticides, Herbicides, Fertilizers, and Plant Growth Regulators Using Nanotechnology
4.4 Crop Condition and Environmental Stress can be Monitored Using Field Sensing System
4.5 Detection of Plant Pathogens and Control Mechanisms
4.6 Environmental Stress Resistant and Disease Resistant Traits can be Improved by Nanotechnology
5 Future Prospects of Nanotechnology in Agriculture
6 Conclusions
References
Chapter 4: Magnetic Nanoparticles from Bacteria
1 Introduction
2 Magnetotactic Bacteria (MTB)
3 Biomineralization
4 Biomagnetism
5 Physiology of Magnetosome and Magnetic Nanoparticle Biosynthesis
5.1 The Magnetic Nanoparticles
5.2 Magnetosome Biosynthesis
5.3 Magnetite Symmetry in Magnetosomes
6 Biotechnological Applications Based on MTB and Magnetosomes
6.1 Applications Using Magnetotactic Bacteria
6.1.1 Bioremediation
6.1.2 Cell Separations
6.2 Applications Using Magnetosomes
6.2.1 Drug Delivery
6.2.2 Hyperthermia
6.2.3 Magnetic Resonance Imaging (MRI)
6.2.4 Antibacterial Agent
6.2.5 Biosensor
6.2.6 Functionalized Magnetosomes
6.2.7 Nucleotide Polymorphism Detection
6.2.8 Immunoassays
6.2.9 Geology, Paleontology and Astrobiology
7 Future Perspectives
8 Conclusion
References
Chapter 5: Benefits of Chitosan-Based and Cellulose-Based Nanocomposites in Food Protection and Food Packaging
1 Introduction
2 Chitosan
2.1 Chitosan-Based Nanocomposites for Food Protection
2.2 Chitosan-Based Nanocomposite for Food Packaging
3 Nanocellulose and Bacterial Cellulose
3.1 Nanocellulose-Based Nanocomposites Used for Food Protection
3.2 Nanocellulose-Based Nanocomposites Used for Food Packaging
4 Conclusion
References
Chapter 6: Nanotechnology for Biofuels: Progress and Pitfalls
1 Introduction
2 Different Generations of Biofuels
2.1 First-Generation Biofuels
2.2 Second-Generation Biofuels
2.3 Third-Generation Biofuels
3 Nanotechnology for Biofuels
3.1 Nanotechnology in Bioethanol Production
3.2 Nanotechnology in Biodiesel Production
3.3 Nanotechnology in Biogas Production
4 Challenges in the Application of Nanomaterials  for Biofuel Production
5 Conclusions
References
Chapter 7: Biosynthesis of Nanoparticles from Bacteria and Thallophytes: Recent Advances
1 Introduction
2 Biological Components for Green Synthesis
3 Synthesis of NPs by Bacteria
4 Synthesis of NPs by Thallophytes
4.1 Synthesis of NPs by Fungi
4.2 Synthesis of NPs by Algae
5 Significance of Bio-Based NPs for Green Application
6 Summary and Perspective
References
Chapter 8: Nanotechnology for Detection and Diagnosis of Plant Diseases
1 Introduction
2 Nanotechnology in the Detection of Pathogens
3 Tools of Nanotechnology
3.1 Nanodiagonastic Kit
3.2 Nanoscale Biosensor
3.3 Antibody Biosensor
3.4 Gold Nanoparticles and Quantum Dots (QDs)
3.5 Nanofabrication
3.6 Portable Nanopore Sequencing and Genome Sequence
3.7 Portable PCR Systems and Portable Equipment
3.8 Nanotechnological Advancement of Plant Pathogen Identification and Diagnosis
3.9 Fluorescent Silica Nanoparticles Merge with Antibody Molecules (FSNP)
4 Modified Copper Nanoparticles with Gold Electrode
4.1 QD Cadmimumtelluride Thioglicolic Acid
4.2 Nano Structural Layer of Biosensors and CuO Nanoparticles
4.3 Carboxylic Groups Contain Modified QD
4.4 Nanoribbon and Nanorod
4.5 Carbon Electrodes are Screen Printed by TiO2 and SnO2 Nanoparticles
4.6 Silver Nanoparticle and Nanowire
4.7 Metal Diagnostics Nanoparticles
4.8 miRNA Expression Pattern in Diseased State
4.9 Nanobiosensor Diagnostics
5 Use of Nano Carbon as a Sensor
5.1 Plant Disease Control Nano-Particles
5.2 Nano Carbon, Silver, and Aluminosilicate
5.3 Association Nanostructures Colloidal Forms for the Supply of Functional Ingredients
5.4 Nano-Emulsion Ingredients
6 Conclusion
References
Chapter 9: Microbial Nanotechnology in Life Sciences: An Opportunity for Green Applications
1 Introduction: Mechanisms of NPs Production by Microorganisms
2 Uses of Microbial Nanotechnology
2.1 Uses of Microbial Nanotechnology in the Medicine
2.1.1 Biosynthesized NPs as Antimicrobial Agents
2.1.2 Biosynthesized NPs as Antitumor and Anticancer Agents
2.1.3 Biosynthesized NPs in Drug Delivery Systems
2.1.4 Biosynthesized NPs in Diagnostics
2.1.5 Conclusion
2.2 Uses of Microbial Nanotechnology in the Agriculture
2.2.1 Uses of Nanotechnology in Agriculture
2.2.2 Role of Different Microbes in the Synthesis of NPs
2.2.3 Possible Mechanisms for Antimicrobial Action of NPs Versus Plant Pathogens
2.2.4 Conclusion
2.3 Uses of Microbial Nanotechnology in the Environment
2.3.1 Application of Environmental Cleaning Processes
2.3.2 Use for Degradation of Emerging Contaminants
2.3.2.1 Degradation of 4-Nitrophenol
2.3.2.2 Degradation of Aromatic Hydrocarbons
2.3.2.3 Toxic Organic Degradation
2.4 Uses of Microbial Nanotechnology in Biosensor
2.5 Uses of Nanotechnology in Food Science
2.5.1 Antimicrobial Effect of NPs for Food Packaging Uses
2.5.2 Silver NPs
2.6 Uses of Nanotechnology in the Cosmetics
3 Conclusion
References
Part II: Nanotechnology for Biomedical Applications
Chapter 10: Organic Carbon Dots for Mitigating Neurodegenerative Diseases
1 Introduction
2 Molecular Mechanisms of AD and PD
2.1 Aberrant Protein Misfolding
2.2 Oxidative Stress
2.3 Mitochondrial Dysfunction
2.4 Endoplasmic Reticulum (ER) Stress and Golgi Apparatus Fragmentation
3 Carbon Dots: Nano-Drugs
4 Application of Carbon Dots to Mitigate Protein Aggregation in AD and PD (Nanodrug)
5 Conclusion
References
Chapter 11: Characterization and Biocompatibility of a Polylactic Acid (PLA) 3D/Printed Scaffold
1 Introduction
2 Bone Tissue Engineering
3 3D Printing of Synthetic Scaffolds
3.1 The 3D Printing Process
3.2 3D Printing Materials
3.3 PLA: A Versatile Printing Material
4 Nanotechnology and Nanomaterials for Bone Regeneration
5 PLA 3D/Printed Scaffold Characterization
5.1 Physical Characterization
5.1.1 Scanning Electron Microscopy (SEM)
5.1.2 Profilometry Analysis
5.2 Thermodynamic Characterization
5.2.1 Differential Scanning Calorimetry (DSC)
5.2.2 Thermogravimetric Analysis (TGA)
5.3 Biological Characterization
5.3.1 Cell Adhesion Assay
5.3.2 Cell Viability Assay (Proliferation)
5.3.3 Cell–Scaffold Interaction Analyzed by Confocal Microscopy
6 Conclusion
References
Chapter 12: Nanoparticles as Artificial Chaperons Suppressing Protein Aggregation: Remedy in Neurodegenerative Diseases
1 Introduction
2 Mode of Action of Nanoparticles in Inhibition of Protein Aggregation
3 Advantages of Nanoparticles over Other Chemical Entities as Protein Aggregation Inhibitors
4 Amyloid-β Aggregates in Alzheimer’s Disease
4.1 Nanoparticle-Based Inhibition of Amyloid-β Aggregates
4.2 Gold Nanoparticles
4.3 Polymeric Nanoparticles
4.4 Anti-Amyloidogenic Molecules Functionalized Nanoparticles
4.5 Peptide-Functionalized Nanoparticles
4.6 Nanoparticle-Based Metal-Chelation Therapy
4.7 Nanoparticles as Nanotheranostics in Proteinopathies
5 Superparamagnetic Iron Oxide Nanoparticles
6 Nanozymes
7 α-Synuclein Aggregates in Parkinson’s Disease
8 Huntingtin Protein in Huntington’s Disease (HD)
9 Future Prospects of Nanoparticles in Prevention of Proteinopathies
References
Chapter 13: Metal–Organic Framework-Based Nanostructures for Biomedical Applications
1 Introduction: Metal–Organic Framework-Based Nanostructures
1.1 Synthesis and Structural Properties of MOFsN
1.1.1 Covalent Post-Synthetically Modification
1.1.2 Coordination Modulation and Coordinative Post-Synthetically Modification
1.1.3 Noncovalent Post-Synthetically Modification
1.1.4 Modifications on the External Surfaces
2 Biomedical Applications of MOFsN
2.1 Drug Delivery Systems
2.2 Magnetic Resonance Imaging (MRI)
2.3 Biosensor
3 Conclusion
References
Chapter 14: Biological Conjugates: Potential Role in Biomedical and Pharmaceutical Applications
1 Introduction
2 Usage of Biological Conjugates from Natural Sources
3 Pharmaceutical Excipients of Microorganism’s Origin
4 Cellulose
5 Nanocellulose
6 Importance of Nanocellulose
7 Application of Nanocellulose
7.1 Diagnostics
7.2 Tissue Repair
8 Drug Delivery
9 Aerogels and Hydrogels
10 Transdermal Drug Delivery System
11 Hyaluronan/Hyaluronic Acid (HA)
11.1 HA-Based Bioconjugates
11.2 HA-Nanoformulated Drugs
12 Cyclodextrins
13 Cyclodextrins Nanostructure
13.1 Cyclodextrins and Medical Devices
14 Dextran
15 Dextran-Based Nanoformulations
15.1 Nucleic Acid Nanoparticles Coated by Dextran
16 Chitosan
16.1 Chitosan-Based Nanoformulations
16.2 Nanoparticles Coating
17 Herbal Excipients
18 Natural Gums
18.1 Natural Gums and Nanoparticles
18.1.1 Guar Gum and Nanoformulations
18.1.2 Nanoformulations from Gum Tragacanth (GT) and Kyara Gum (KG)
18.1.3 Xanthan Gum Nanoformulations
18.1.4 Gum Acacia
18.1.5 Tamarind Gum Nanoparticles
19 Challenges
20 Commercial Nanoformulations
21 Conclusion
References
Chapter 15: Biosurfactants Based Nano Micelles for Extraction of Biomolecules
1 Introduction
2 Micellization of Surfactant Molecules
3 Micellar Extraction
4 Reverse Micelle Extraction
5 Biosurfactants
5.1 Rhamnolipids
5.2 Sophorolipids
5.3 Lipopeptides
5.4 Saponins
5.5 Other Biosurfactants
5.6 Limitations
6 Scope, Approach, and Applications
7 Conclusion
References
Chapter 16: Implications of the Nanoscopic Surface Modification on the Protein Adsorption and Cell Adhesion
1 Introduction
1.1 Scope of this Chapter
2 Protein Adsorption
2.1 Protein Composition (Hydrophobicity and Charge), pH, Temperature, and Ionic Concentration
2.2 Effect of Surface Properties
2.2.1 Physio-Chemical Surface Properties
2.3 Techniques to Study Protein Adsorption
3 Cell Adhesion
3.1 Role of Integrins in Cell Adhesion
3.1.1 Integrin Role Studied by Knockout Mice Models
3.2 Focal Adhesion Kinase (FAK)
3.2.1 Structural Divisions of FAK
3.2.2 FAK Regulation: Activation/Inactivation
3.3 Effect of Surfaces on Integrin Activation/Inactivation
4 Factors Affecting Cell Adhesion
4.1 Surface Characteristics
4.1.1 Topography
4.1.1.1 Lithography
4.1.1.2 SAMs Pattern
4.1.2 Surface Roughness
4.1.3 Surface Potential
5 Conclusions
References
Part III: Nanotechnology for Plant and Environmental Applications
Chapter 17: Nanotechnology as Effective Tool for Improved Crop Production under Changing Climatic Conditions
1 Introduction
2 Nanoscale Materials Used for Improved Plant Growth
2.1 Nanopriming
2.2 Nanofertilizers
3 Nanoscale Materials Used for Crop Protection
3.1 Nanoherbicides
3.2 Nanoinsecticides
3.3 Nanoformulations to Handle Plant Diseases
4 Nanoparticles Used for Mitigation of Abiotic Stresses
4.1 Drought Stress
4.2 Heat and UV Radiation Stress
4.3 Salinity Stress
4.4 Flood Stress
5 Conclusions
References
Chapter 18: Silver Nanoparticles as a Fungicide against Soil-Borne Sclerotium rolfsii: A Case Study for Wheat Plants
1 Introduction
1.1 Scope, Approach, and Current Applications of Silver Nanoparticles as Fungicide
1.2 Mechanistic Understanding of Silver Nanoparticles as a Fungicide
1.2.1 Adhesion to Cell Wall
1.2.2 Interaction with Cell Membrane
1.2.3 Cellular Toxicity and ROS Toxicity
2 Case Study: Silver Nanoparticles against Sclerotium rolfsii
2.1 Synthesis and Characterization of Silver Nanoparticles (AgNPs)
2.1.1 Synthesis of Silver Nanoparticles
2.1.2 Characterization of Silver Nanoparticles
2.2 In Vitro Antifungal Activity
2.2.1 Purification and Maintenance of Fungal Culture
2.2.2 Plate Assay
2.2.3 Broth Assay and Microscopy
2.2.4 In Vitro Sclerotia Germination
2.3 In Planta Studies: Impact of AgNP Treatment on Growth Profile of Sclerotium Challenged Wheat Plants
2.3.1 Microscopy
3 Results and Discussion
3.1 Synthesis and Characterization of Silver Nanoparticles (AgNPs)
3.1.1 U.V Visible Spectroscopy
3.1.2 Dynamic Light Scattering (DLS)
3.2 Role of AgNE in Suppression of S. rolfsii Growth under in Vitro Conditions
3.2.1 Plate Assay
3.2.2 Broth Assay and Microscopy
3.2.3 Microscopic Studies Demonstrating the Effect of AgNE on Fungal Growth
3.2.4 In Vitro Sclerotia Germination
3.3 In Planta Studies on Tripartite Interaction Concerning AgNP, S. rolfsii and Wheat and its Overall Impact on Growth Profile of Wheat Plants
3.3.1 Percent Seed Germination
3.3.2 Plant Height (Shoot+Root Length)
3.3.3 Vigor Index
3.3.4 Plant Weight (Shoot+Root)
3.3.5 Microscopic Observations
4 Conclusions and Future Prospects
References
Chapter 19: Novel Strategies for Environmental Remediation of Pesticides Using Nanocatalysts
1 Introduction
2 Types of Nanocatalysts
3 Applications of Nanocatalysts for the Pesticide Removal
4 Mechanism of Nanocatalyst Action on Pesticides
4.1 Nanocomposites: Graphene Oxide
4.2 Carbon-Based Nanocatalysts: Carbon Nanotubes (CNTs)
4.3 Nanoparticles: Metal-Based Oxides
5 Significance of Nanocatalysts in Pesticide Remediation
6 Challenges in the Use of Nanocatalyst for Environmental Remediation
7 Conclusion
References
Chapter 20: Synthesis of Novel Metal/Metal Oxide-Based Nanomaterials Using Plant Derivatives and Their Potential Environmental Applications
1 Introduction
2 Advantages of Biosynthetic Method in Nanoparticle Synthesis
3 Biosynthesis of Metal and Metal Oxide Nanoparticles
3.1 Plant-Mediated Synthesis of Silver Nanoparticle (Ag NPs)
3.2 Plant-Mediated Synthesis of Gold Nanoparticles (Au NPs)
3.3 Plant-Mediated Synthesis of Platinum (Pt NPs) and Palladium Nanoparticles (Pd NPs)
3.4 Plant-Mediated Synthesis of Zinc Oxide Nanoparticles
3.5 Plant-Mediated Synthesis of Nickel and Nickel Oxide Nanoparticle
3.6 Plant-Mediated Synthesis of Iron Nanoparticle
3.7 Plant-Mediated Synthesis of Titanium Dioxide (TiO2 NPs)
3.8 Plant-Mediated Synthesis of Copper (Cu NPs) and Copper Oxide Nanoparticle (CuO NPs)
4 Factors Influencing the Synthesis of Nanoparticles
5 Catalytic Applications of Nanoparticles
6 Conclusion and Future Aspect of Plant-Derived Nanoparticles
References
Chapter 21: Dry Deposition of Atmospheric Nanoparticles
1 Introduction
2 Fundamentals of Particulate Matter
3 Size distribution of Particulate Matter (PM)
4 Ionic Composition of the Particulate Matter
5 Dry Deposition Mechanism
6 Effects of PM on Environment and Human Health
7 Case Study: Dry Deposition in Araraquara city
7.1 Methodology
7.2 Air Mass Trajectories and Number of Fires
7.3 Evaluation of the Concentration and the Distribution of the Particulate Matter Diameter
7.4 Number of Burning Spots and Air Masses Trajectories
7.5 Curves of Dry Deposition velocity and Deposition Flux
8 Conclusions
References
Chapter 22: Biochar-Based Nanocomposites: A Sustainable Solution for Water and Wastewater Treatment
1 Introduction
2 Biochar Nanocomposites: Properties and Preparation
2.1 Pre-Pyrolysis Treatment Method
2.2 Post-Pyrolysis Treatment Method
2.3 Target Elements Enrichment by Bioaccumulation
3 Types of Biochar Nanocomposites
3.1 Magnetic Biochar Composites
3.2 Nanometal Oxide/Hydroxides Biochar Composites
3.3 Functional Nanoparticles Coated Biochar Composites
4 Application in Treatment of Water and Wastewater
4.1 Organic Contaminants
4.1.1 Dyes
4.1.2 Pharmaceuticals
4.1.3 Phenolic Compounds
4.2 Inorganic Contaminants
4.3 Heavy Metals
5 Benefits and Challenges
6 Conclusion and Future Prospects
References
Index