Applications of High Energy Radiations: Synthesis and Processing of Polymeric Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents the applications of high-energy beam radiation for synthesis and processing of polymeric materials. It addresses fundamental nature of high energy i.e., ionizing radiations and interaction with monomers and polymers leading to a wide variety of products such as tyres, textiles, shape memory polymers, polymers for aviation and space applications, polymeric biomaterials and natural rubber latex. It discusses general principles and techniques of preparation of polymeric materials including polymer blends, composites and nanocomposites. It also includes the topic of radiation-assisted recycling of polymers through breaking of covalent bonds. This book will be useful for students, researchers and professionals in the areas of polymers science and technology, radiation technology, electron beam technology, gamma radiation technology, advanced materials technology, biomaterials technology, nanotechnology, membrane science technology and environmental science.

Author(s): Subhendu Ray Chowdhury
Series: Materials Horizons: From Nature to Nanomaterials
Publisher: Springer
Year: 2023

Language: English
Pages: 501
City: Singapore

Foreword
Preface
Contents
About the Editor
1 Application of Radiation Curing on Properties and Performance of Polymers and Polymer Composites
1 Introduction
2 Types of Radiation Curing Used in Polymer Systems
3 Radiation-Induced Polymerizations
4 Effect of Radiation Curing on Properties and Performance of Polymer and Polymer Composites
4.1 Gamma Irradiation of Polymer and Their Composites
4.2 Effect of Electron Beam Curing on Properties and Performance of Polymer Composites
4.3 UV Radiation Curing on Properties and Performance of Polymer and Their Composites
4.4 Microwave Irradiation of Polymer and Polymer Composites
5 Conclusion
References
2 Electron Beam Radiation Technology Application in the Tyre Industry
1 Introduction
2 Principles of EB Irradiation
2.1 Dosimetry
2.2 Electron Energy Utilization Efficiency
2.3 Processing Capacity and Yield
3 Tyre Rubbers
4 EB Irradiation-Induced Reactions in Tyre Rubbers
5 Analysis of Electron Beam-Cured Tyre Compounds
5.1 Cross-Link Density
5.2 Gel Content
5.3 Green Strength and Tack
5.4 Mechanical Properties
5.5 Polymer-Filler Interaction
6 Impact on the ‘Magic Triangle’ of Tyres
6.1 Rolling Resistance
6.2 Abrasion Resistance
6.3 Wet Grip
7 Conclusion
References
3 Electron Beam Irradiation-Induced Compatibilization of Poly (Lactic Acid)-Based Blends
1 Introduction
2 Modification of PLA Properties
2.1 E-beam Irradiation of PLA
2.2 PLA-Based Blends and Their Compatibilization Techniques
3 Conclusion
References
4 Radiation Curing of Fiber Reinforced Polymer Composite Based Mechanical Joints
1 Introduction
2 Materials and methods
2.1 Materials
2.2 Manufacturing of EB Cured Carbon/Epoxy Composite Laminates
2.3 Mechanical Characterization
2.4 Preparation of Mechanical Joints
2.5 Accelerated Aging Conditions
3 Characterization
3.1 Scanning Electron Microscopy (SEM)
3.2 Thermal Properties
3.3 Chemical Properties
3.4 Mechanical Properties
4 Performance Evaluation of Joint Specimens
4.1 Bolted Joint Under Accelerated Aging Conditions
5 Results and Discussion
5.1 Pin Joints
5.2 Bolted Joints
6 Conclusions
References
5 Thermally Stimulated Shape Memory Character of Radiation Crosslinked Polyolefinic Blends
1 Introduction
1.1 Shape Memory Polymers (SMPs) and Its Background
1.2 Basic Principles of SMPs
1.3 Class of SMPs
1.4 Molecular Mechanism of SMPs
1.5 Conventional SMPs
1.6 General Concept of Shape Memory Polymer Blends
2 Various Polyolefinic blends
2.1 SMP of Polyethylene/Polycyclooctene Blends
2.2 SMP of Polyethylene/Polypropylene Blends
2.3 SMP Blends of EOC-EPDM
2.4 SMP Blends of Two Alpha Olefins
3 Conclusions
References
6 Radiation Processed Emerging Materials for Biomedical Applications
1 Introduction
2 Radiation Processing: Purpose
2.1 Advantages of Radiation Processing Over Conventional Chemical Method
3 Types of Radiation Processing
3.1 Ultraviolet (UV) Radiation Processing
3.2 Microwave Irradiation of Polymers
3.3 X-ray Processing
3.4 Electron Beam Processing (EBP) of Polymers
3.5 Gamma Processing of Polymers
3.6 Neutron Beam Processing
4 Classification of Polymeric System for Biomedical Application
4.1 Single Polymer System
4.2 Polymer Blends
4.3 Polymer Composite and Nanocomposite
5 Preparation and Processing of Radiation-Processed Polymers
5.1 Synthesis of Hydrogel by Radiation Processing
5.2 Hydrogel for Therapeutic (Drug Delivery System) Use
5.3 Hydrogel for Contact Lens (Ophthalmic Sector)
5.4 Preparation of Polymers via UV Radiation Processing for Contact Lens
5.5 Radiation-Processed Polymeric System for Implant
6 Radiation Processing of Nanomaterials for Biomedical Applications
7 Specifications to Meet at Applications
8 Applications
8.1 Radiation-Processed Hydrogel for Medical Use
8.2 Synthetic Polymeric System: Medical Device Sterilization
8.3 Augmenting Additive Manufacturing by Integrating with Radiation Technology for Biomedical Applications
9 Conclusion
References
7 Effect of High-Energy Radiations on High Temperature-Resistant Thermoplastic Polymeric Composite for Aviation, Space, and Nuclear Applications
1 Introduction
1.1 Applications of Polymers in Radiation Environment
2 High-Energy Radiations
2.1 Ionizing Radiation
2.2 General Effect of Radiation on Polymers
2.3 Plasma Surface Modification
3 High-Performance Polymers
3.1 Thermal Stability
3.2 Crystallinity
4 Case Study 1: Gamma Irradiation Effects on High-Performance Polymer
4.1 Materials
4.2 Exposure to Radiation and Corrosive Environment
4.3 Changes in Thermomechanical Properties Post-exposure to Radiation
4.4 Conclusion
5 Case Study 2: Plasma Surface Modification of High-Performance Polymers
5.1 Materials
5.2 Plasma Surface Modification
5.3 Changes in Properties Post-plasma Treatment
5.4 Conclusion
6 Summary, Conclusions, and Scope for Future Work
References
8 Recent Developments of the Radiation Processed Hybrid Organic–Inorganic Polymer Nanocomposites: Expected and Unexpected Achievements
1 Introduction
2 Hypothesis of Bulk Morphology of Nanosilica-Filled Model LDPE/EVA TPE System
3 Evaluation of Bulk Morphology by Microscopy Studies
3.1 FESEM Studies
3.2 TEM Studies
3.3 SEM Studies
4 FTIR Studies
5 Mechanical Properties
6 Reprocessibility Studies
7 Rheological Properties
7.1 Melt Viscosity by Capillary Flow—MPT Studies
7.2 Oscillatory Shear Flow—RPA Studies: Frequency Sweep
7.3 Comparison Between the Capillary and Dynamic Rheology: Effect of Frequency or Shear Rate
7.4 Morphology of Extrudates
8 Thermal and Thermo-oxidative Degradation Studies
8.1 Effect of Pristine Nanosilica on Thermal and Thermo–oxidative Degradation Characteristics of LDPE/EVA Systems
8.2 Effect of EB Irradiation on Thermo–oxidative Degradation Characteristics of Silica Filled Nanocomposites
8.3 Kinetic Methods for Degradation [87]
9 Electrical and Dielectric Properties
9.1 Effect of Electron Beam Irradiation at Controlled Dose on the Dielectric Properties
9.2 Volume Resistivity (ρυ) and Electrical Breakdown Testing
9.3 Swelling-Deswelling Kinetics
10 Conclusion and Outlooks
References
9 Radiation Processing of Natural Rubber Latex
1 Introduction
2 Natural Rubber Latex
2.1 Major Constituents of the Fresh Hevea Latex
2.2 Processing of Latex
2.3 Concentration of Latex
2.4 Latex Compound and Its Processing
3 Vulcanization
4 Pre-vulcanization
4.1 Sulfur Pre-vulcanized Natural Rubber Latex
4.2 Peroxide Pre-vulcanization
4.3 Radiation Vulcanization
4.4 Radiation by UV Vulcanization of NRL
4.5 Radiation Vulcanization of Natural Rubber Latex by Caesium137 Source
5 Conclusion
References
10 Development of Multi-component Polymeric Systems by High Energy Radiation
1 Introduction
1.1 Various Polymeric Systems: Multi-component Polymers
1.2 Advantages of Multi-component Polymeric Systems
2 General Aspects of High Energy Radiation
2.1 Gamma and Electron Beam Radiation
2.2 Chain Crosslinking and Grafting
2.3 Radiation Grafting
2.4 Effect of Radiation Source
3 Radiation Processing of Polymeric Multi-component Systems
3.1 The High Energy Radiation Processing of Polymer Blends
3.2 The Radiation Resistant Polymer Blends
4 Effect of High Energy Radiation on the Performance of Polymer Composites
4.1 High Energy Radiation Processing of Polymer Nanocomposite
4.2 High-Performance Hybrid Clay Nanocomposite
5 Radiation Curing of Ink, Resin, and Coating Materials
6 Electron Beam Versus Gamma Processing: Current Scenario
7 Radiation-Processed Polymer Multi-Component Systems: High-Performance Applications
8 Conclusion
References
11 Polymer Recycling by Radiation
1 Introduction
2 Mechanistic Role of Radiation in Polymer Recycling
3 Application of Radiolysis in Polymer Sorting
4 Modification of Waste Polymers Through Radiolysis
5 Recycling of Elastomers
6 Upscaling/upcycling of High-Performance Polymers (or High-Temperature/Performance Polymers Processing)
7 Composite Recycling
8 Low- or High-Energy Radiation-Induced Pyrolysis of Polymer: Conversion to Chemicals and Fuels
9 Conclusion and Future Directions
References
12 Radiation-Induced Degradation of Polymers: An Aspect Less Exploited
1 Introduction
2 Polymer Degradation Methods
2.1 Depolymerization
2.2 Polymer Degradation
2.3 Mechanism of Degradation
2.4 Quantitative Estimation of Radiolytic Degradation
3 Radiation-Induced Degradation of Polymers and Their Applications
3.1 Radiation-Induced Degradation of Synthetic Polymers
3.2 Radiation-Induced Degradation of Natural Polymers and Their Applications
4 Future Scenario
References
13 Electron Beam Radiation-Assisted Preparation and Modification of Thermoplastic Elastomer Blends
1 Introduction
2 Literature Review
2.1 EPDM-PP and EPDM–PE Blend System
2.2 NBR–PP and NBR–HDPE Blend System
3 TPEs Prepared by Dynamic Vulcanization
3.1 Heat Resistant TPE
3.2 Moderate Heat and Oil-Resistant TPE
4 Material
4.1 TPEs from EPDM/PP Blend
4.2 TPEs from EPDM–PE Blend
4.3 TPEs from NBR/HDPE Blends
4.4 TPEs from NBR/PP
5 Sample Preparation and Irradiation
5.1 EPDM: PP Blend Sample Preparation
5.2 EPDM: PE Blend Sample Preparation
5.3 NBR: HDPE Blend Sample Preparation
5.4 NBR: PP Blend Sample Preparation
6 Measurement of Properties, Results, and Discussion for EPDM: PP Blend
6.1 Measurement of Properties
6.2 Results and Discussion
7 Measurement of Properties, Results, and Discussion for EPDM: PE Blend
7.1 Measurement of Properties
7.2 Results and Discussion
8 Measurement of Properties, Results, and Discussion for NBR: HDPE Blend
8.1 Measurement of Properties
8.2 Results and Discussion
9 Measurement of Properties, Results, and Discussion for NBR: PP Blend
9.1 Measurement of Properties
9.2 Result and Discussion
10 Conclusion
10.1 EPDM/PP System
10.2 EPDM/LDPE System
10.3 NBR/HDPE System
10.4 NBR/PP System
References
14 Recent Advances in Electron Beam Processing of Textile Materials
1 Introduction
2 Theoretical Basis of Electron Beam Radiation Processing of Textiles
3 Factors Affecting Radiation Processing of Textiles
3.1 Absorbed Dose
3.2 Electron Beam Energy
3.3 Depth of Penetration
3.4 Line Speed
3.5 Effect of Chemical Nature of Polymer
3.6 Effect of the Environment
3.7 Effect of Temperature
4 Enhancement in Radiation Processing of Textiles
4.1 Increasing the Yield of Polymeric Radicals By
4.2 Enhancing the Possibility of Recombination of Polymeric Radicals By
4.3 Addition of Fillers
5 Recent Advances in Electron Beam Radiation Processing of Textiles
5.1 Textile Fibers
5.2 Textile Fabric
5.3 Textile Material Reinforced Composites
5.4 Textile Wastewater Treatment
6 Future Scope
7 Conclusions
References