Annual Update in Intensive Care and Emergency Medicine 2021

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Comprehensively documents the most recent developments in experimental and clinical research in IC and EM Written by acknowledged experts in the field Broad appeal for all who work in internal medicine, anesthesia, surgery, pediatrics, IC and emergency medicine The Annual Update compiles reviews of the most recent developments in experimental and clinical intensive care and emergency medicine research and practice in one comprehensive book. The chapters are written by well recognized experts in these fields. The book is addressed to everyone involved in internal medicine, anesthesia, surgery, pediatrics, intensive care and emergency medicine.

Author(s): Jean-Louis Vincent
Series: Annual Update in Intensive Care and Emergency Medicine
Edition: 1
Publisher: Springer
Year: 2021

Language: English
Tags: Intensive Care Medicine; Emergency Medicine; Critical Care

Contents
Abbreviations
Part I: Sepsis
1: Effect of Sex and Gender in Sepsis and Septic Shock: A Narrative Review
1.1 Introduction
1.2 Epidemiology
1.2.1 Source of Infection
1.2.2 Sepsis and Septic Shock
1.2.3 Sepsis and Shock Septic Outcomes
1.2.4 Coronavirus Disease 2019 (COVID-19)
1.3 Mechanisms Underlying Sex Differences
1.3.1 Animal Models
1.3.2 Sex Hormones
1.3.3 Chromosomes
1.3.4 Immune Response
1.3.5 Behavioral Factors and Gender Dimorphism
1.4 Therapeutic Strategies and Sex Inequalities
1.5 Conclusion
References
2: Complex Immune Dysregulation in COVID-19 and Implications for Treatment
2.1 Introduction
2.2 What Does Cytokine Storm Signify in COVID-19?
2.3 The Role of Monocytes
2.4 From Pathogenesis to Treatment: Suggestion for an Individualized Approach
2.5 Conclusion
References
3: Measuring Vitamin C in Critically Ill Patients: Clinical Importance and Practical Difficulties—Is It Time for a Surrogate Marker?
3.1 Introduction
3.2 Rationale of Vitamin C Administration
3.3 Plasma Vitamin C Measurement
3.3.1 Drawing Blood
3.3.2 Sample Treatment
3.3.3 Analysis
3.3.3.1 Enzymatic Vitamin C Assays
3.3.3.2 Chromatographic Vitamin C Assays
3.3.3.3 Chromatographical Assessment of Ascorbic Acid, DHA and Total Vitamin C
3.4 Static Oxidation-Reduction Potential
3.5 Conclusion
References
4: Controversies on Non-renal Extracorporeal Therapies in Critically Ill COVID-19 Patients
4.1 Introduction
4.2 The Enthusiast
4.3 The Opponent
4.4 The ADQI Workgroup: Recommendations from the COVID-19-Associated Acute Kidney Injury Consensus Report
4.5 Conclusion
References
5: Secondary Infections in Critically Ill Patients with COVID-19
5.1 Introduction
5.2 Epidemiology and Risk Factors
5.2.1 Bacterial Infections
5.2.2 Fungal Infections
5.3 Diagnosis of Secondary Infections
5.3.1 Bacterial Infections
5.3.2 Fungal Infections
5.4 Principles of Treatment
5.4.1 Bacterial Infections
5.4.2 Fungal Infections
5.5 Conclusion
References
Part II: Shock
6: Heart Dysfunction in Septic Patients: From Physiology to Echocardiographic Patterns
6.1 Introduction
6.2 Septic Heart Pathophysiology: Myocardial Cellular Injury
6.2.1 Danger-/Damage-associated Molecular Patterns
6.2.2 Nitric Oxide
6.2.3 Intracellular Ca2+ Metabolism
6.2.4 Mitochondrial Dysfunction
6.3 Septic Heart Dysfunction: Role of Echocardiography on Clinical Assessment and Prognosis
6.3.1 Left Ventricular Systolic Septic Dysfunction and Prognosis
6.3.1.1 Left Ventricular Ejection Fraction
6.3.1.2 Left Ventricular Systolic Function and Tissue Doppler Imaging
6.3.1.3 Left Ventricular Systolic Function and Speckle-tracking Echocardiography
6.3.2 Left Ventricular Diastolic Dysfunction
6.3.3 Right Ventricular Systolic Septic Dysfunction and Prognosis
6.4 Beyond Echocardiography: Cardiovascular Clusters in Septic Shock Combining Clinical and Echocardiographic Parameters
References
7: Non-adrenergic Vasopressors in Septic Shock: Overview and Update
7.1 Introduction
7.2 Hyporesponsiveness to Catecholamines in Septic Shock
7.3 Rationale for the Use of Non-adrenergic Vasopressors
7.4 Available Non-adrenergic Vasopressors
7.4.1 Vasopressin and Vasopressin Derivatives
7.4.1.1 Vasopressin
7.4.1.2 Terlipressin
7.4.1.3 Selepressin
7.4.2 Angiotensin II
7.5 Future Perspectives
7.6 Conclusion
References
8: Pathophysiology and Clinical Implications of the Veno-arterial PCO2 Gap
8.1 Introduction
8.2 Physiological Aspects of CO2 Production and Transport
8.2.1 The CO2 Dissociation Curve (PCO2-CCO2 Relationship)
8.3 The Pv-aCO2 Gap: Pathophysiology and Clinical Implications
8.3.1 The Inverse Relationship Between Cardiac Output and the Pv-aCO2 gap
8.3.2 Pv-aCO2 Gap and Tissue Dysoxia
8.3.2.1 The Pv-aCO2 Gap in Stagnant Dysoxia
8.3.2.2 The Pv-aCO2 Gap in Hypoxic or Anemic Dysoxia
8.3.2.3 The Pv-aCO2 Gap in Cytopathic dysoxia
8.3.3 The Pv-aCO2 Gap in Sepsis
8.4 Use of the Pv-aCO2 Gap as a Prognostic Tool
8.5 Pitfalls in the Interpretation of the Pv-aCO2 Gap
8.6 Conclusion
References
9: Still a Place for Aortic Counterpulsation in Cardiac Surgery and Patients with Cardiogenic Shock?
9.1 Introduction
9.2 Technological Aspects and (Patho-)physiological Effects
9.3 Intraaortic Counterpulsation in Cardiogenic Shock
9.4 Intraaortic Counterpulsation in Cardiac Surgery
9.5 Conclusion
References
Part III: The Microcirculation
10: The Clinical Relevance of High-Altitude Microcirculation Studies: The Example of COVID-19
10.1 Introduction
10.2 Microcirculatory Function Regulates Oxygen Delivery to the Tissue
10.3 Measuring Oxygen Delivery to the Tissue
10.4 Recruitment of Non-perfused Sublingual Capillaries as a Mechanism to Increase Microcirculatory Oxygen Extraction Capacity at High Altitude
10.5 The Microcirculation in Critically Ill Patients with COVID-19
10.6 Clinical Implications Relating to the Treatment of Critically Ill and Perioperative Patients
10.7 Conclusion
References
11: Observation of Leukocyte Kinetics Using Handheld Vital Microscopes During Surgery and Critical Illness
11.1 Introduction
11.2 Microcirculation and Hand-held Vital Microscopes
11.3 Microcirculation and Inflammation
11.4 Observation of Leukocyte Kinetics Using Handheld Vital Microscopy
11.4.1 The Conventional Manual Counting Method
11.4.2 The Frame Averaging Method
11.4.3 The Space-Time Diagram Method
11.5 Clinical Perspective and Future Expectations
11.6 Conclusion
References
Part IV: Airway and Non-invasive Ventilation
12: Tracheostomy for COVID-19: Evolving Best Practice
12.1 Introduction
12.2 Why Perform a Tracheostomy?
12.3 When to Perform a Tracheostomy?
12.4 What is the Best Technique for Inserting a Tracheostomy?
12.5 Subsequent Management of a Patient with a Tracheostomy
12.6 Conclusion
References
13: Modernizing Tracheostomy Practice to Improve Resource Utilization and Survivorship Outcomes
13.1 Introduction
13.2 What is the Pre-COVID-19 Evidence for Early Tracheostomy?
13.3 What Does ‘Early’ Tracheostomy Really Mean?
13.4 What Respiratory Parameters or Criteria Ensure It Is Safe to Perform a Tracheostomy?
13.5 What Does Predicting Prolonged Mechanical Ventilation Really Mean?
13.6 Why Has Prone Position Been Considered a Limitation For Early Tracheostomy?
13.7 What Is the Real Risk for Healthcare Workers Performing Tracheostomies During the COVID-19 Pandemic?
13.8 Post-tracheostomy Care
13.9 What Are the Implications of Tracheostomy for COVID-19 Survivorship?
13.10 Lessons from COVID-19
13.11 Conclusion
References
14: Helmet Non-invasive Ventilation in Acute Hypoxemic Respiratory Failure Due to COVID-19
14.1 Introduction
14.2 Helmet Description
14.3 Physiologic Considerations of Helmet NIV
14.3.1 Oxygenation and Work of Breathing
14.3.2 Ventilation: Carbon Dioxide (CO2) Exchange
14.3.3 Aerosol Generation
14.3.4 Hemodynamic Effects
14.4 Clinical Evidence for Helmet NIV in Non-Covid-19 Acute Hypoxemic Respiratory Failure
14.5 Helmet NIV in COVID-19
14.6 Application
14.6.1 Mode of Ventilation
14.6.2 Humidification
14.6.3 Noise Management
14.6.4 Nursing Care
14.7 Limitations
14.7.1 Claustrophobia
14.7.2 Team Experience
14.7.3 Limited Ability for Tidal Volume Measurement
14.7.4 Neck and Axillary Pain and Ulceration
14.7.5 Barotrauma
14.7.6 Delayed Intubation
14.8 Conclusion and Future Directions
References
Part V: Acute Respiratory Distress Syndrome
15: Mechanisms of Hypoxemia in the Acute Respiratory Distress Syndrome
15.1 Introduction
15.2 Mechanisms of Hypoxemia in ARDS
15.2.1 Loss of Alveolar Inflation
15.2.2 Increased Dead Space
15.2.3 Loss of Hypoxic Pulmonary Vasoconstriction
15.2.4 Low Mixed Venous Oxygen Saturation
15.2.5 Intracardiac and Intrapulmonary Anatomical Shunts
15.3 Recognizing ARDS Phenotypes Based on the Prevalent Mechanisms of Hypoxemia
15.4 Conclusion
References
16: To Prone or Not to Prone ARDS Patients on ECMO
16.1 Introduction
16.2 Physiological Effects of Prone Position in Patients with ARDS
16.2.1 Effects on Respiratory Mechanics and Ventilation-Perfusion Ratio
16.2.2 Effects on Gas Exchange
16.2.3 Hemodynamic Effects of Prone Position
16.2.4 Effects on Hospital-Acquired Respiratory Infections
16.3 Indications and Contraindications
16.3.1 Indications
16.3.2 Contraindications
16.4 How to Perform Prone Positioning in ECMO Patients
16.5 Clinical Evidence of Benefit from the Prone Position in Patients Treated with ECMO
16.6 Complications during Prone Positioning in ECMO Patients
16.7 Which ECMO Patients Should Be Proned?
16.8 Research Priorities
16.9 Conclusion
References
17: Mesenchymal Stromal Cell Therapy in Typical ARDS and Severe COVID-19
17.1 Introduction
17.2 Mechanisms of Action of MSCs
17.3 Effects of MSCs in Models of ARDS
17.4 MSCs in Typical ARDS: Clinical Trials
17.5 MSCs in Severe COVID-19
17.6 Conclusion
References
Part VI: Renal Issues
18: Acute Kidney Injury in ECMO Patients
18.1 Introduction
18.2 Incidence of AKI in ECMO
18.3 Pathophysiology of AKI in ECMO
18.3.1 Patient Factors and Critical Illness
18.3.2 Impact of Mechanical Ventilation
18.3.3 ECMO-Related Factors
18.4 Risk Factors for AKI
18.5 RRT and ECMO
18.5.1 Indications
18.5.2 Timing
18.5.3 Modality
18.5.4 Techniques
18.5.4.1 In-Line Hemofilter
18.5.4.2 Parallel System (Independent RRT Access)
18.5.4.3 Integrated System (Combining RRT Machine into the ECMO Circuit)
18.5.4.4 Comparison of Different Techniques
18.5.5 Technical Aspects
18.5.5.1 Mediator Removal
18.5.5.2 Anticoagulation
18.5.5.3 Drug Dosing
18.6 Short-Term Outcomes
18.7 Renal Recovery and Long-Term Outcomes
18.8 Conclusion
References
19: Management of Acute Metabolic Acidosis in the ICU: Sodium Bicarbonate and Renal Replacement Therapy
19.1 Introduction
19.2 Epidemiology of Metabolic Acidosis in the ICU
19.3 Common Types of Metabolic Acidosis in the ICU
19.4 Why Metabolic Acidosis Matters
19.5 How We Manage Metabolic Acidosis in the ICU
19.6 Sodium Bicarbonate for Subtypes of Metabolic Acidosis
19.7 Renal Replacement Therapy for Metabolic Acidosis
19.8 Agenda for Future Research
19.9 Conclusion
References
20: Critically Ill Patients with Acute Kidney Injury: Focus on Nutrition
20.1 Introduction
20.2 Metabolic Alterations in AKI
20.3 Nutritional Support
20.3.1 Strategies for Artificial Nutrition
20.3.2 Calories in AKI
20.3.3 Proteins in AKI
20.3.4 Micronutrients in AKI: Vitamins and Oligoelements
20.4 Conclusion
References
Part VII: Acute Brain Injury
21: Carbon Dioxide Management in TBI: From Theory to Practice
21.1 Introduction
21.2 Cerebral Blood Flow and Cerebrovascular CO2 Reactivity
21.3 Effects of Hyperventilation on Intracranial Pressure and CBF
21.4 Current Recommendations
21.5 From Guidelines to Clinical Practice
21.6 Conclusion
References
22: Monitoring and Modifying Brain Oxygenation in Patients at Risk of Hypoxic Ischemic Brain Injury After Cardiac Arrest
22.1 Introduction
22.2 Cerebral Oxygenation Monitoring Using NIRS
22.3 Regional Tissue Oxygenation in Hypoxic Brain Injury
22.4 Cerebral Oxygenation Index in Hypoxic Brain Injury
22.5 Invasive Monitoring of Cerebral Oxygenation
22.6 Interventions Available for Modifying Cerebral Oxygenation
22.7 Conclusions and Need for Future Studies
References
23: ICU Delirium in the Era of the COVID-19 Pandemic
23.1 Introduction
23.2 Epidemiology and Risk Factors
23.3 Pathophysiology and Mechanisms
23.3.1 Delirium as a Result of Direct Neural Invasion
23.3.2 Delirium as a Result of an Inflammatory Process
23.3.3 Secondary Complications of COVID-19 Infection that may Cause Delirium
23.3.4 Environmental or Iatrogenic Causes of Delirium
23.4 Outcome
23.5 Post-Intensive Care Syndrome and Post-Intensive Care Syndrome-Family
23.6 Prevention and Management of ICU Delirium
23.7 Conclusion
References
Part VIII: Emergencies
24: Advanced Management of Intermediate-High Risk Pulmonary Embolism
24.1 Introduction
24.2 Treatment of High–Intermediate Risk Submassive Pulmonary Embolism
24.2.1 Systemic Thrombolytic Therapy
24.2.2 Catheter-Directed Therapies
24.3 Pulmonary Embolism Response Teams
24.4 Submassive Pulmonary Embolism: Rescue Therapy
24.4.1 Surgical Embolectomy
24.4.2 RV Assist Devices
24.4.3 Extracorporeal Membrane Oxygenation
24.5 Conclusion
References
25: Enhancing Non-ICU Clinician Capability and ICU Bed Capacity to Manage Pandemic Patient Surge
25.1 Introduction
25.2 Standards of Care
25.3 Surge-Induced Issues
25.4 Novel ICU Spaces
25.5 Staffing Solutions to Expand ICU Clinician Supply
25.5.1 Non-ICU Clinician Training and the Tiered Staffing Strategy
25.5.2 Facility Level Accommodation
25.6 Resuming Usual Care
25.7 Potential Future Approaches
25.8 Conclusion
References
Index