Analytical Chemistry for the Study of Paintings and the Detection of Forgeries

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Forgeries present a daunting problem to art historians, museums, galleries and curators who face challenges in determining the authenticity of paintings. Recent progress in science has led to the development of new methods for investigating works of art, and can provide new insights into the materials found in paintings. The rise in the value of paintings together with the knowledge and skills of forgers highlights the need to develop reliable scientific procedures to identify fakes. Given the complexity of materials in paintings and the convergence of various disciplines, a methodological approach for nvestigations of paintings is based on art historical, curatorial, aesthetic, technical and scientific evaluation.

In this book sophisticated digital and analytical techniques are reviewed for the identification of materials (pigments, binders, varnishes, adhesives) and the physical characteristics of paintings such as brushstrokes, craquelure and canvas weaves.

This book presents an updated overview of both non-invasive and micro-invasive techniques that enable the material characterization of paintings. The materials constituting a painting are reviewed, as are ways that changes in materials over time can provide insights into chronology and physical history. State-of the art digital metods including multi and hyper-spectral imaging and computational approaches to data treatment will be presented. Analytical techniques developed and optimized to characterize binders, varnishes, and pigments are reviewed, focusing on materials which can provide information on ageing or provenance. Case studies of applications of synchrotron-based methods and the analysis of paintings are given, as are chapters devoted to legal aspects related to authenticity.

Chapter 1 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Author(s): Maria Perla Colombini, Ilaria Degano, Austin Nevin
Series: Cultural Heritage Science
Publisher: Springer
Year: 2022

Language: English
Pages: 520
City: Cham

Preface
Contents
Part I: Approaches to the Authentication of Works of Art
Chapter 1: The Eye Versus Chemistry? From Twentieth to Twenty-First Century Connoisseurship
1.1 Connoisseurship, the Humanities and Some Recent Insights from Cognitive Psychology
1.2 The Eye Versus Chemistry: Early Interactions Between Connoisseurs and Chemists
1.3 The Van Meegeren Scandal: A Turning Point
1.4 Excessive Optimism: The Potential and Limitations of Scientific Techniques
1.5 Paradigm Change and Myriad New Techniques
1.6 The Digitally Enhanced Eye: Connoisseurship and Smart Tools
1.6.1 The Curtain Viewer
1.6.2 Morelli’s Vision
1.6.3 Draper
1.6.4 PixelSwarm
1.7 Concluding Remarks: Challenges and Opportunities
References
Chapter 2: Scientific Study, Condition Challenges, and Attribution Questions in Yves Tanguy’s Oeuvre
2.1 Introduction
2.1.1 Attribution Challenges for Yves Tanguy and His Contemporaries
2.1.2 Science, Attribution, and the Art Market
2.1.3 Background Information on Yves Tanguy’s Influences and Life
2.1.4 Current Resources for Yves Tanguy Attribution Research
2.1.5 Condition and the Surrealists
2.2 Background
2.2.1 Prior Technical Art History Studies of Surrealist Works
2.3 The Extant Problems of Yves Tanguy and His Oeuvre
2.3.1 Condition Issues in Surrealist Paintings That Challenge Authenticity as a Dichotomy
2.3.2 Current Status of Yves Tanguy’s Oeuvre
2.4 Extant Information on Tanguy’s Working Methods
2.5 Tanguy’s Methods
2.6 Tanguy’s Materials
2.7 Scientific Study of Yves Tanguy Works
2.7.1 Technical Imaging
2.8 Conclusions
2.9 Experimental Methods
2.9.1 Imaging methods
2.9.2 Spectroscopic methods
2.9.3 Elemental Analysis – X-Ray Fluorescence (XRF)
References
Chapter 3: Analytical Approaches to the Analysis of Paintings: An Overview of Methods and Materials
3.1 Introduction
3.2 Materials
3.2.1 Supports
3.2.2 Pigments
3.2.3 Traditional Paint Binders
3.2.4 Modern Paint Binders
3.2.5 Varnishes
3.3 Conclusions
References
Part II: Characterization of Paintings by Digital Techniques
Chapter 4: Visible and Infrared Reflectance Imaging Spectroscopy of Paintings and Works on Paper
4.1 Introduction
4.2 Definition of Diffuse Reflectance Imaging Spectroscopy
4.3 Use of Diffuse Reflectance Imaging Spectroscopy in Cultural Heritage Science
4.4 Spectral Range of Hyperspectral Reflectance Cameras Used in Cultural Heritage Science
4.5 Instrumentation and Experimental Procedures for Reflectance Imaging Spectroscopic Studies (350–2500 nm)
4.6 Image Processing and Exploitation of Reflectance Image Cubes (350–2500 nm)
4.7 The Mid-IR Instrumentation, Experimental Procedures, and Image Processing (4000 cm−1 to 650 cm−1, 2.5 to 15.4 μm)
4.8 The Future of Reflectance Imaging Spectroscopy
4.9 Case Studies
4.9.1 Identification and Mapping of Artists’ Materials: Pigments
4.9.2 Identification and Mapping of Artists’ Materials: Paint Binders
4.9.3 The Earlier Composition of Fragonard’s Young Girl Reading
References
Chapter 5: Automated Analysis of Drawings at the Stroke Level for Attribution and Authentication Using Artificial Intelligence
5.1 Introduction
5.2 From Pictology to AI-Pictology
5.3 Challenges with Drawings
5.3.1 Case Study: Picasso, Matisse, and Schiele
5.4 Stroke Segmentation
5.5 Stroke Analysis and Recognition
5.5.1 Quantifying Stroke Characteristics
5.5.1.1 Stroke Shape Characteristics
5.5.1.2 Stroke Tonal Variations: Deep Learned Features Using RNNs
5.5.2 Stroke-Level Classification
5.5.3 Drawing Classification
5.6 Example Results and Validations
5.6.1 Segmentation Validation
5.6.2 Stroke Classification
5.6.2.1 Stroke Classification Validation – Technique Specific – Pairwise
5.6.2.2 Stroke Classification Validation – One-vs-All
5.6.3 Drawing Classification and Detection of Fakes
5.7 Conclusions
References
Part III: Material Characterization of Paintings by Instrumental Techniques
Chapter 6: Analytical Pyrolysis of Organic Paint Materials for Authentication and Attribution
6.1 Introduction
6.2 The Analysis of Original and Restoration Materials in Ancient Polychromies and Paintings
6.2.1 An Etruscan Sarcophagus from the Fourth Century BC: “Sarcofago delle Amazzoni”
6.2.2 Mural Painting in a Roman Villa Dated 10 BC–5 AD: The Casa del Bicentenario in Herculaneum
6.2.3 Hierapolis of Phrygia First-Third Century AD (Pamukkale, Denizli, Turkey)
6.2.4 1385 AD ca – Annunciation and Saints by Giovanni del Biondo
6.2.5 Fourteenth–Seventeenth Century – Wall Paintings of the Monumental Cemetery of Pisa
6.2.6 Sixteenth Century Madonna con Bambino, Giovanni Pietro Rizzoli
6.3 Py-GC-MS Analysing Modern Paint Materials
6.4 Characterization of Organic Pigments
6.5 Conclusions
References
Chapter 7: Direct and Hyphenated Mass Spectrometry to Detect Glycerolipids and Additives in Paint
7.1 Introduction
7.1.1 Overview of the Use of Oil Paint Binders
7.1.1.1 Oil Paint
7.1.1.2 Oil Varnishes
7.1.1.3 Additives and Modifications
7.1.2 Chemistry of Oil Paints
7.1.2.1 Oil Composition
7.1.2.2 Pre-heating Process
7.1.2.3 Drying Process
7.1.2.4 Ageing Process
7.1.2.5 Degradation Phenomena
7.2 Mass Spectrometry
7.3 Chromatography – Mass Spectrometry
7.3.1 GC-MS
7.3.2 LC-MS
7.4 Direct MS
7.4.1 Spray Ionisation
7.4.1.1 ESI-MS
7.4.1.2 SAWN-MS
7.4.1.3 DESI-MS
7.4.2 MALDI MS
7.4.3 ToF-SIMS
7.4.4 Thermal Desorption and Pyrolysis Techniques
7.4.4.1 DTMS
7.4.4.2 EGA-MS
7.5 Glycerolipid Markers, Modifications and Additives
7.5.1 Lipid Markers and Relation to Ageing
7.5.1.1 Detection and Identification of Glycerolipid Binders
7.5.1.2 Distinction of Glycerides, Free Fatty Acids and Metal Carboxylates
7.5.1.3 Influence of Heat Treatment on Degree of Oxidation
7.5.2 Lipid Additives
7.5.3 Oil Paint Modifications
7.5.3.1 Oleoresinous Media
7.5.3.2 Alkyd Paints
7.5.3.3 Oil/Protein Mixtures
7.5.4 Degradation Studies
7.5.4.1 Saponification
7.5.4.2 Influence of Moisture
7.5.4.3 Water Sensitivity
7.5.5 Studies on Forgeries
7.6 Conclusion
References
Chapter 8: Fluorescence for the Analysis of Paintings
8.1 Introduction
8.2 Documentation of Paintings
8.3 Capturing Fluorescence Images
8.4 On the Fluorescence of Varnishes
8.4.1 Examples of Inspection of Varnish and Restorations on Paintings
8.4.2 A Note on UV Stabilised Varnishes and Assessing Condition
8.5 UV Fluorescence for the Analysis of Binding media
8.6 UV Fluorescence for the Analysis of Pigments
8.6.1 Inorganic Pigments
8.6.2 Organic Pigments
8.7 Conclusions
References
Chapter 9: Analysis of Natural and Synthetic Organic Lakes and Pigments by Chromatographic and Mass Spectrometric Techniques
9.1 Introduction
9.1.1 Natural Organic Lakes
9.1.2 Synthetic Organic Pigments (SOPs)
9.2 Analysis: Methods, Instrumentation, and Specific Issues
9.2.1 High Performance Liquid Chromatography (HPLC) and Ultra Performance Liquid Chromatography (UPLC)
9.2.2 Gas Chromatography – Mass Spectrometry (GC/MS) and Analytical Pyrolysis (Py-GC/MS)
9.2.3 Mass Spectrometry Based Techniques
9.2.4 Sample Preparation
9.2.5 Data Interpretation
9.3 A Further Analytical Issue: Photo-Degradation of Coloured Compounds
9.4 Case Studies
9.4.1 Commercial Paint Materials: Database of Manufacturers
9.4.2 Commercial Paint Materials: Comparison of Yellow Formulations
9.4.3 Ageing and a Cautionary Tale
9.4.4 Ageing and a Tale of Success
9.5 Conclusions
References
Chapter 10: Raman Analysis of Inorganic and Organic Pigments
10.1 Introduction
10.2 Theory of the Raman Effect
10.3 Laboratory Raman Spectroscopy
10.4 Direct and Mobile Raman Spectroscopy
10.5 Non-invasive Stratigraphic Analysis: SORS
10.6 Surface-Enhanced Raman Spectroscopy (SERS)
10.7 Conclusions
References
Chapter 11: Non-invasive and Non-destructive Examination of Artists’ Pigments, Paints and Paintings by Means of X-Ray Imaging Methods
11.1 Introduction
11.2 Principles of XRF and XRD Mapping
11.2.1 Principles of XRF
11.2.1.1 XRF Mapping: Regular and Confocal Mapping
11.2.1.2 Depth-Selective XRF
11.2.2 Principles of XRD
11.2.2.1 XRD Mapping in Two and Three Dimensions
11.3 Applications of MA-XRF and/or MA-XRD Mapping
11.3.1 Virtual Reconstructions and Retracing the Composition of the Original Artists’ Materials
11.3.1.1 Crystallite Orientation Within Paint Layers
11.3.2 Mapping of Degradation Products
11.4 Distinguishing Original from Add-On Paint and Detection of Counterfeit Artefacts
11.4.1 Example 1. Identification and localization of Different Smalt Types in ‘Saul and David’, Rembrandt
11.4.2 Example 2: Pigment Use and Layer Buildup of a Counterfeit ‘seventeenth century’ Flowerpiece
11.4.3 Example 3: Mary Magdalene, a Counterfeit ‘fifteenth century’ Panel by Renowned Restorer Jef Van der Veken
11.5 Conclusions
References
Chapter 12: Microchemical Imaging of Oil Paint Composition and Degradation: State-of-the-Art and Future Prospects
12.1 Introduction
12.2 Infrared-based Methods
12.2.1 μ-FTIR
12.2.2 AFM-IR
12.3 Methods Based on UV and Visible Light
12.3.1 PL Microimaging
12.3.2 Raman Microspectroscopy
12.4 Methods Based on X-Rays
12.4.1 μ-XRF
12.4.2 μ-XAS
12.4.3 μ-XRD
12.5 Methods Based on Charged Particle Beams
12.5.1 SEM-EDX
12.5.2 TEM
12.5.3 Imaging SIMS
12.6 Future Prospects
12.6.1 Improved Retrieval of Spatial Information
12.6.1.1 Improvements in Spatial Resolution
12.6.1.2 Increasing the Number of Analyzed Spatial Points
12.6.2 Improved Retrieval of Chemical Information
12.6.2.1 Semi-hyperspectral Total Synchronous PL Microimaging
12.6.2.2 Site-Selective and High-Energy Resolution μ-XANES
12.6.2.3 Energy-Dispersive μ-EXAFS
12.6.2.4 X-Ray Raman Scattering
12.6.2.5 SEM-Raman & Electron Backscatter Diffraction
12.6.2.6 Imaging MALDI Mass Spectrometry
12.6.3 Addressing the Limited Statistical Relevance of Analysis on Paint Microsamples
12.6.3.1 Three-Dimensional Microchemical Imaging
12.6.3.2 Object-Based Sub-surface Microchemical Imaging
12.6.4 Integrating Computational Methodologies in the Processing of Microchemical Data
12.7 Conclusion
Glossary
References
Part IV: Isotopic Analysis for Authentication
Chapter 13: Dating of Artwork by Radiocarbon
13.1 Radiocarbon Dating
13.1.1 Introduction
13.1.2 The 14C Dating Method
13.2 Measuring Techniques
13.2.1 Sample Pretreatment
13.2.2 Radiometry
13.2.3 Accelerator Mass Spectrometry
13.3 Timescale Calibration
13.4 Dating Artwork
13.4.1 General
13.4.2 Dating of Wood
13.4.3 Contamination
13.4.4 New Materials
13.4.5 Forgeries
13.4.6 The Radiocarbon “Artwork Convention”
13.5 Conclusions
References
Chapter 14: Lead Isotope Ratios of Lead White: From Provenance to Authentication
14.1 Introduction
14.2 Lead White Production
14.3 Lead Ore Deposits
14.4 The Isotopes of Lead
14.5 Lead Production
14.5.1 European Lead Production (Fifteenth to Seventeenth Century)
14.6 Lead Isotope Analysis
14.7 Current State-of-the-Art
14.7.1 Lead Isotope Ratios in Paintings: Provenance and Identification
14.7.2 Post Production Retouching and Modification
14.7.3 From Macro to Micro: Lead Isotope Ratios Within a Painting
14.7.4 Temporal Change in Lead Isotope Ratios of Lead White: A Case of Study for Seventeenth Century Dutch Paintings
14.8 Lead Isotope Tool Box for Identification
14.9 Conclusion
Bibliography
Part V: Case Studies
Chapter 15: The Role of Technical Study and Chemical Analysis on Questions of Attribution and Dating of Paintings and on Easel Painting Conservation Practice: Selected Case Studies
15.1 Introduction
15.2 Case Studies
15.2.1 Dating, Assigning Geographical Origin
15.2.2 Physical History
15.2.2.1 Characterising and Imitating the Aging of Materials
15.2.3 Attribution
15.2.3.1 Signatures, Studio Practice and Collaborative Production
15.2.3.2 Review of Attribution Using New Analytical Evidence
15.3 Conclusion
References
Chapter 16: Approaches to Current Issues with Art Forgery, Restoration and Conservation: Legal and Scientific Perspectives
16.1 Case Studies Involving Art Forgery
16.2 Defining the Terminology: Fake v. Forgery
16.2.1 Contractual Protections for Buyers of Art
16.2.2 Tort Claims
16.3 Case Studies Involving Art Conservation
16.4 Defining Terminology: Distinctions Between Conservation, Restoration and Preservation
16.4.1 Artwork Owner’s Claims Against Conservators
16.4.2 Tort Claims
16.4.3 Contract Claims
16.4.4 Remedies
16.4.5 City of Amsterdam v. Daniel Goldreyer (1995)
16.4.6 Practical Considerations for Drafting Conservation Contracts
16.4.7 Moral Rights of Artists and Art Conservation
16.5 Conclusion
References