Advances in High-Performance Motion Control of Mechatronic Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Mechatronic systems are used in a range of consumer products from large-scale braking systems in vehicular agents to small-scale integrated sensors in mobile phones. To keep pace in the competitive consumer electronics industry, companies need to continuously improve servo evaluation and position control of these mechatronic systems. Advances in High-Performance Motion Control of Mechatronic Systems covers advanced control topics for mechatronic applications. In particular, the book examines control systems design for ultra-fast and ultra-precise positioning of mechanical actuators in mechatronic systems. The book systematically describes motion control design methods for trajectory design, sampled-data precise positioning, transient control using switching control, and dual-stage actuator control. Each method is described in detail, from theoretical aspects to examples of actual industry applications including hard disk drives, optical disk drives, galvano scanners, personal mobility robots, and more. This helps readers better understand how to translate control theories and algorithms from theory to design and implementation in realistic engineering systems. The book also identifies important research directions and advanced control techniques that may provide solutions for the next generation of high-performance mechatronics. Bridging research and industry, this book presents state-of-the-art control design methodologies that are widely applicable to industries such as manufacturing, robotics, home appliances, automobiles, printers, and optical drives. It guides readers toward more effective solutions for high-performance mechatronic systems in their own products.

Author(s): Takashi Yamaguchi, Mitsuo Hirata, Chee Khiang Pang
Publisher: CRC Press
Year: 2013

Language: English
Pages: xxxii+306
City: Boca Raton

Advances in High-Performance Motion Control of Mechatronic Systems......Page 4
Contents......Page 8
List of Figures......Page 14
List of Tables......Page 24
Audience......Page 26
Supplementary Materials......Page 27
Acknowledgments......Page 28
Mitsuo Hirata......Page 30
Chee Khiang Pang......Page 31
Contributors......Page 32
1.1.1 Scope of Book......Page 34
1.1.2 Past Studies from High-Speed Precision Motion Control......Page 37
1.2.1 Mechanical Structure......Page 38
1.2.2 Modeling......Page 39
1.3.1 Growth in Areal Density......Page 41
1.3.2.1 Application of Control Theories......Page 43
1.3.2.2 Improvement of Control Structure......Page 45
Bibliography......Page 46
2 Fast Motion Control Using TDOF Control Structure and Optimal Feedforward Input......Page 50
2.1.1 One-Degree-Of-Freedom Control System......Page 51
2.1.2 Two-Degrees-Of-Freedom Control System......Page 52
2.1.3 Implementation of Feedforward Input by TDOF Control Structure......Page 55
2.2.1 Minimum Time Control......Page 56
2.2.2 Minimum Jerk Input......Page 57
2.2.3 Digital Implementation of Minimum Jerk Input......Page 60
2.2.4 Sampled-Data Polynomial Input......Page 61
2.3.1 Problem Formulation......Page 66
2.3.2 Minimum Jerk Input Design by FSC......Page 67
2.3.3 Vibration Minimized Input Design by FSC......Page 68
2.3.4 Final-State Control with Constraints......Page 71
2.4.1 HDD Benchmark Problem and the Plant Model......Page 72
Design 1......Page 75
Design 2......Page 78
2.5.1 Plant Model......Page 81
2.5.2 FSC and FFSC Inputs Design......Page 82
2.5.3 Simulation Results......Page 86
2.5.4 Experimental Results......Page 87
2.6.1 Voltage Saturation in Current Amplifier......Page 91
2.6.2 FSC Design Considering Voltage Saturation in Current Amplifier......Page 92
2.6.3 Application to Galvano Scanner Control Problem......Page 94
Bibliography......Page 100
3 Transient Control Using Initial Value Compensation......Page 102
3.1.1 Background......Page 103
3.1.2 Initial Value Compensation (IVC)......Page 106
3.2 Overview of Switching Control......Page 107
3.3 Design of IVC......Page 111
3.3.1 Design of Initial Values on Feedback Controller......Page 112
3.3.2 Design of Additional Input to Controller......Page 117
3.3.3 Design of Optimal Switching Condition......Page 122
3.4.1 HDD (Reduction of Acoustic Noise)......Page 130
3.4.2.1 Introduction......Page 133
3.4.2.2 Mathematical Model......Page 143
3.4.2.3 Design of IVC......Page 144
3.4.2.4 Experimental Results......Page 145
3.4.3 Optical Disk Drive......Page 146
3.5.1.1 Introduction......Page 147
3.5.1.2 Mathematical Model......Page 148
3.6 Conclusion......Page 156
Bibliography......Page 162
4 Precise Positioning Control in Sampled-Data Systems......Page 168
4.1 Introduction......Page 169
4.2.1 Relationship Between Continuous- and Discrete-Time Signals......Page 170
4.2.2 Sensitivity and Complementary Sensitivity Transfer Functions in Sampled-Data Control Systems......Page 171
4.2.3 Sampled-Data Control System Using a Multi-Rate Digital Filter......Page 175
4.3.1.1 Definition of Unobservable Magnitude of Oscillations......Page 179
4.3.1.2 Oscillations at the Sampling Frequency......Page 180
4.3.1.3 Oscillations at the Nyquist Frequency......Page 181
4.3.2.1 Definition of Unobservable Magnitudes of Oscillations with Damping......Page 183
4.3.2.2 Example of Unobservable Magnitudes for Oscillations with Damping......Page 185
4.3.2.3 Index of Unobservable Magnitudes......Page 190
4.4.1.1 SRS Analysis......Page 195
4.4.1.2 SRS Analysis Using Half-Sine Wave......Page 197
4.4.1.3 SRS Analysis Using Polynomial Wave......Page 199
4.4.1.4 Comparison between SRS and DFT......Page 201
4.5.1 Head-Positioning Control System......Page 208
4.5.1.1 Controlled Object......Page 209
4.5.2 Sensitivity and Complementary Sensitivity Transfer Functions......Page 210
4.5.2.1 Design of Control System......Page 211
4.5.2.2 Simulation and Experiment......Page 213
4.5.3 Unobservable Oscillations......Page 220
4.5.4 Residual Vibrations......Page 221
4.5.4.1 Feedback Control System......Page 222
4.5.4.2 Feedforward Control System......Page 224
4.5.4.3 SRS Analysis......Page 225
4.5.4.4 Simulation and Experimental Results......Page 226
Bibliography......Page 230
5 Dual-Stage Systems and Control......Page 232
5.1 Introduction......Page 233
5.2 System Identification of Dual-Stage Actuators in HDDs......Page 234
5.2.1.1 Continuous-Time Measurement......Page 235
5.2.1.2 Discrete-Time Measurement......Page 236
5.2.2.1 Continuous-Time Measurement......Page 243
5.2.2.2 Discrete-Time Measurement......Page 245
5.3 Resonance Compensation Without Extraneous Sensors......Page 246
5.3.2 Inverse Compensation......Page 247
5.3.3.1 Using Mechanical Resonant Modes......Page 248
5.3.3.2 Using LTI Peak Filters......Page 249
5.3.3.3 Using LTV Peak Filters......Page 257
5.3.4 Experimental Verifications......Page 260
5.4 Resonance Compensation With Extraneous Sensors......Page 263
5.4.2 Self-Sensing Actuation (SSA)......Page 264
5.4.2.1 Direct-Driven SSA (DDSSA)......Page 265
5.4.2.2 Indirect-Driven SSA (IDSSA)......Page 267
5.4.3 Model-Based Design......Page 268
5.4.4 Non-Model-Based Design......Page 271
5.5 Dual-Stage Controller Design......Page 275
5.5.1.1 Parallel......Page 276
5.5.1.2 Coupled Master-Slave (CMS)......Page 277
5.5.1.3 Decoupled Master-Slave (DMS)......Page 278
5.5.2 Design Example......Page 279
5.5.2.1 Primary Actuator Controller: VCM Loop......Page 280
5.5.2.2 Secondary Actuator Controller: PZT Active Suspension Loop......Page 281
5.5.3 Simulation Results......Page 283
5.6 Conclusion......Page 285
Bibliography......Page 286
6 Concluding Remarks from Editors......Page 292
6.1.1 What is High-Speed Precision Motion Control?......Page 293
6.1.2 Sensing and Closing the Loop: Shifting Resource Power to a Right Field......Page 294
6.1.3 Control Structure: Generating New Design Parameters......Page 295
6.1.5 Summary......Page 296
6.2.2 Support Vector Machine......Page 300
6.2.3.2 Plant Model......Page 302
6.2.3.3 Training the Discriminant Function......Page 303
6.2.3.4 Validation......Page 304
6.2.4 Summary......Page 305
6.3.1 Constraints and Limitations......Page 307
6.3.1.1 Anti-Resonant Zeros......Page 309
6.3.1.3 Sensitivity Transfer Function......Page 310
6.3.1.4 Limitations on Positioning Accuracy......Page 311
6.3.2.1 Continuous Bode’s Integral Theorem......Page 312
6.3.2.2 Discrete Bode’s Integral Theorem......Page 313
6.3.3 Summary......Page 314
Bibliography......Page 316
C......Page 318
D......Page 319
G......Page 322
H......Page 323
I......Page 326
M......Page 329
P......Page 330
R......Page 331
S......Page 332
T......Page 335
U......Page 336
Z......Page 337