Active Array Antennas for High Resolution Microwave Imaging Radar

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book highlights the application of active array antennas in high-resolution microwave imaging radar systems. It introduces the basic principles, analytical methods, and performance parameters of active array antennas to achieve low profile, high efficiency, and lightweight. The book systematically elaborates the architecture, analysis, and engineering practice to achieve wideband, multi-band, multi-polarization, and common aperture in active array antennas. It explores hotspot technologies of digital array antennas, microwave photonic array antennas, and active packaging antennas. By presenting over 300 illustrations and diagrams, including schematic diagrams, block diagrams, relation diagrams, and breakdown drawings, the book enables a thorough understanding of the antenna array microsystem as the advanced phase of active array antennas and the direction of future R&D.  The book is a good reference source for researchers and engineers interested in the engineering and implementation of microwave imaging radar systems and antenna technology.

Author(s): Jiaguo Lu, Wei Wang, Xiaolu Wang, Yongxin Guo
Publisher: Springer-NDIP
Year: 2023

Language: English
Pages: 454
City: Beijing

Preface
About This Book
Contents
Acronyms
1 Introduction
1.1 High-Resolution Microwave Imaging Radar
1.2 Development of Antenna Technology
1.2.1 Wire Antennas
1.2.2 Planar Antennas
1.2.3 Planar Array Antennas
1.2.4 Active Array Antennas
1.3 Active Array Antennas
1.3.1 Characteristics of Active Array Antennas
1.3.2 Semiconductor Integrated Circuit Technology
1.3.3 Hybrid Integrated Circuit Technology
1.4 Technology Development and Prospect of Active Array Antennas
1.4.1 Relationship Between an Imaging Radar and an Antenna
1.4.2 Active Array Antenna Technology
1.4.3 Antenna Array Microsystems
1.5 Chapter Summary
References
2 Array Antenna Analysis and Optimization
2.1 Basic Parameters
2.1.1 Port Parameters
2.1.2 Radiation Parameters
2.2 Linear Arrays
2.2.1 Linear Arrays
2.2.2 Equal-Amplitude Linear Arrays
2.2.3 Unequal-Amplitude Linear Arrays
2.2.4 Unequally Spaced Linear Arrays
2.2.5 Effect of Element Pattern on Array Pattern
2.3 Planar Array Antennas
2.3.1 Array Layout
2.3.2 Planar Array Synthesis
2.4 Sparse Arrays
2.4.1 Random Sparse Array Layout
2.4.2 Sub-array Layout
2.4.3 Sparse Array Elements
2.5 Array-Shaped-Beam Synthesis
2.5.1 Phase Weighting
2.5.2 Amplitude and Phase Weighting
2.5.3 Applications
References
3 Array Antenna Error and Compensation
3.1 Introduction
3.2 Radiation Characteristic Parameters
3.2.1 Sidelobe Level
3.2.2 Beam Pointing
3.2.3 Antenna Gain
3.3 Error Analysis
3.3.1 Array Antenna Error Sources
3.3.2 Error Source Analysis
3.3.3 Error Acquisition
3.3.4 Error Analysis
3.4 Antenna Measurement
3.4.1 Antenna Test Method
3.4.2 Near-Field Measurement
3.4.3 Aperture Field Inversion Calibration
3.4.4 One-by-One Calibration
3.5 Accurate Calculation of Radiation Performance
3.5.1 Principle
3.5.2 Accurate Modeling
3.5.3 Calculation Example
References
4 Broadband Active Array Antennas
4.1 Instantaneous Bandwidth Limitation
4.1.1 Beam Pointing Deviation Limit
4.1.2 Aperture Fill Time Limit
4.1.3 Signal Frequency Modulation Rate Limit
4.2 Delay Compensation Methods
4.2.1 Element-Level Delay Line Configuration
4.2.2 Sub-array-Level Delay Line Configuration
4.2.3 Array Antenna Coordinate System
4.2.4 Delay Line Configuration Design
4.2.5 1D Sub-array Delay Line Configuration Example
4.2.6 2D Sub-array Delay Line Configuration Example
4.3 RF Time Delay Components
4.3.1 Introduction
4.3.2 Real-Time Latency Fundamentals and Classification
4.3.3 Delay Line Component Parameters
4.3.4 Real-Time Delay Line Design
4.4 Real-Time Delay Line Example
References
5 Active Array Module Integration
5.1 Introduction
5.2 Array Feed Configuration
5.2.1 Series Feed
5.2.2 Parallel Feed
5.2.3 Space Feed
5.2.4 Multi-beamforming Network
5.3 Modular Integration Architecture
5.3.1 Module Architecture Classification
5.3.2 Brick SAM Module
5.3.3 Tile SAM Architecture
5.4 RF Link Signal Analysis
5.4.1 RF Link Model
5.4.2 RF Link Signal Analysis
5.5 Miniaturized Transceiver Components
5.5.1 Basic Composition
5.5.2 Principle
5.5.3 Basic Parameters
5.5.4 Component Integration Architecture
5.5.5 Circuit Analysis and Design
5.6 Environmental Adaptive Technology
5.6.1 Space Environment Requirements
5.6.2 Electromagnetic Compatibility Design Technology
5.6.3 Thermal Design Technology
5.7 Applications
References
6 Shared-Aperture Array Antennas
6.1 Introduction
6.1.1 Dual-Polarized Antenna Configuration
6.1.2 Multi-band Dual-Polarization Shared-Aperture Configuration
6.2 Principle
6.2.1 Basic Parameters
6.2.2 Dual-Polarization Shared Aperture
6.2.3 Multi-band, Multi-polarization Shared Aperture
6.3 Antenna Elements
6.3.1 Dielectric-Based Antennas
6.3.2 Metal-Based Antennas
6.3.3 Hybrid-Based Antennas
6.4 Dual-Polarized Microstrip Antennas
6.4.1 Microstrip Antenna Elements
6.4.2 Dual-Polarized Microstrip Antenna Arrays
6.4.3 Dual Circular Polarized Antennas
6.5 Dual-Polarization Waveguide Slot Array Antennas
6.5.1 Waveguide Slot Configuration
6.5.2 Bandwidth Widening Technology
6.5.3 Cross-Polarization Suppression
6.5.4 Dual-Polarization Waveguide Slot Array Antennas
6.5.5 Dual Circularly Polarized Slot Waveguide Antennas
6.5.6 Dual-Polarized Aperture Waveguide Antennas
6.6 Multi-band and Multi-polarized Shared Aperture
6.6.1 Dual-Band Single Polarization
6.6.2 Dual-Band and Dual-Polarization Shared-Aperture Antennas
6.6.3 Three-Band Dual-Polarized Shared-Aperture Antennas
References
7 Active Antenna-in-Package Arrays
7.1 Introduction
7.1.1 AiP Configuration
7.1.2 AiP Active Arrays
7.2 AiP Elements
7.2.1 Multi-layer Microstrip Antennas
7.2.2 Cavity-Backed Antennas
7.2.3 Bandwidth and Impedance Matching
7.3 Multi-layer Vertical Interconnect Technology
7.3.1 Land Fuzz Button Interconnection
7.3.2 Land BGA Interconnection
7.3.3 Land LGA Interconnection
7.3.4 Intra-Board Layer-to-Layer Interconnect
7.3.5 Through-Silicon Via
7.4 Thermal Design and Heat Dissipation Technology
7.4.1 Analysis of Chip Heat Dissipation
7.4.2 Microchannel Cold Plate
7.4.3 Thermal Simulation Technology
7.5 Embedded Microwave Devices
7.5.1 Inductors, Capacitors and Resistors
7.5.2 Duplexers, Couplers
7.5.3 Filters
7.5.4 Power Dividers/Combiners
7.6 Materials and Processes of AiP
7.6.1 LTCC Materials and Processes
7.6.2 HTCC Materials and Processes
7.6.3 Organic Materials and Processes
7.7 Applications
References
8 Digital Array Antennas
8.1 Introduction
8.2 Digital Signal Generation
8.2.1 Phase Accumulators
8.2.2 Phase/Amplitude Converters
8.2.3 Direct Digital Waveform Synthesis
8.2.4 Direct Digital Synthesis
8.2.5 DDS Spectrum
8.2.6 DDS Spurious Suppression
8.3 Digital Receivers
8.3.1 Digital Sampling
8.3.2 Digital Down Conversion
8.3.3 Noise Figure
8.3.4 Dynamic Range
8.3.5 Example
8.4 Frequency Source
8.4.1 Noise Coherence
8.4.2 Frequency Source System
8.4.3 Distributed Frequency Source Characteristics
8.4.4 Distributed Frequency Source Implementation
8.5 Applications
References
9 Microwave Photonic Array Antennas
9.1 Introduction
9.1.1 Microwave Photonic Digital Array Antennas
9.1.2 Optically Controlled Phased Array Antennas
9.1.3 Phase Shifters and Delay Lines
9.2 True Time Delay Lines
9.3 Microwave Photonic Link
9.3.1 Microwave Signal Modulation and Demodulation
9.3.2 Optical Analog-to-Digital Conversion (ADC)
9.3.3 Microwave Photonic Filtering
9.4 Microwave Photonic Devices
9.4.1 Lasers and Detectors
9.4.2 Modulators and Demodulators
9.4.3 Optical Fibers and Optical Amplifiers
9.4.4 Optical Splitters and Optical Wavelength Division Multiplexers
9.4.5 Optical Isolators and Circulators
9.4.6 Optical Phase Shifters and Optical Switches
9.5 Microwave Photonic Link Analysis
9.5.1 Noise Source
9.5.2 Noise Figure (NF)
9.5.3 Dynamic Range
9.5.4 Isolation
9.5.5 Link Insertion Loss
9.5.6 Gain Flatness
9.5.7 Amplitude and Phase Error
9.6 Applications
References