A Practical Guide to Atmospheric Simulation Chambers

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This open access title presents atmospheric simulation chambers as effective tools for atmospheric chemistry research. State-of-the-art simulation chambers provide unprecedented opportunities for atmospheric scientists to perform experiments that address the most important questions in air quality and climate research. The book covers technical details about chamber preparation and practical guidelines on their usage, while also delivering relevant historical and contextual information. It not only serves as a key publication for knowledge transfer within the simulation chamber research community, but it also provides the global atmospheric science community with a unique resource that outlines best practice for the operation of simulation chambers. The authors summarize the latest advances in chamber interoperability and standard protocols in order to provide the research community and the next generations of scientists with a unique technical reference guide for the use of simulation chambers. The volume will be of great interest to researchers and graduates working in the fields of Atmospheric and Environmental Sciences.

Author(s): Jean-François Doussin, Hendrik Fuchs, Astrid Kiendler-Scharr, Paul Seakins, John Wenger
Publisher: Springer
Year: 2023

Language: English
Pages: 344
City: Cham

Preface
Contents
1 Introduction to Atmospheric Simulation Chambers and Their Applications
1.1 A Short History of Atmospheric Simulation Chambers
1.2 Investigations of Atmospheric Processes 
1.2.1 Reaction Kinetics and Product Studies
1.2.2 Simulating Gas Phase Mechanism, Radical Cycles and Secondary Pollutant Formation
1.2.3 Aerosol Processes
1.2.4 Cloud Processes
1.2.5 Characterization and Processing of Real-World Emissions 
1.2.6 Mineral Dust
1.3 Bridging the Gap Between Laboratory and Field Studies
1.3.1 Tracers and Sources of Fingerprint Studies
1.3.2 Instrument Comparison Campaigns
1.3.3 Field Deployable Chamber
1.4 Emerging Applications
1.4.1 Air-Sea/Ice Sheet Interaction
1.4.2 Health Impacts
1.4.3 Bioaerosols
1.4.4 Cultural Heritage
1.5 Considerations on the Design of an Atmospheric Simulation Chamber
1.5.1 Chemical Regime of Simulation Experiments
1.5.2 Chamber Size
1.5.3 Materials
1.5.4 Light Sources
1.5.5 Instrumentation
1.6 Conclusion
References
2 Physical and Chemical Characterization of the Chamber
2.1 Measurements of Temperature, Pressure, and Humidity
2.2 Determination of the Mixing Time and Dilution Rates
2.3 Determination of Photolysis Frequencies
2.3.1 Chemical Actinometry in Air
2.3.2 Chemical Actinometry in Nitrogen
2.4 Gas-Phase Wall Losses of Species
2.5 Particle Wall Losses
2.6 Characterization of the Chamber State by Gas-Phase Reference Experiments
2.6.1 Chamber Blank Experiments
2.6.2 Reference Experiments Using Well Known Chemical Systems
2.6.3 Experiments with Mixtures of NOx in Air
2.6.4 Photochemical Oxidation of CO/Methane
2.6.5 Photo-Oxidation of Propene in the Presence of NOx
2.7 Characterization of the Chamber State by Aerosol-Phase Reference Experiments
2.7.1 Reference Photo-Oxidation Experiments
2.7.2 Reference Ozonolysis Experiments
References
3 Preparation of Simulation Chambers for Experiments
3.1 Chamber Cleaning Protocols
3.2 Chamber Cleaning Concepts
3.2.1 Oxidation
3.2.2 Dilution
3.2.3 Baking
3.2.4 Manual Cleaning
3.3 Preparation of a Clean Chamber Atmosphere
3.4 Control and Blank Experiments
3.4.1 Walls Chemical Inertia
3.4.2 Chamber Dependent Radical Sources
3.4.3 Soluble Species Affecting Potential Aqueous SOA Formation
References
4 Preparation of Experiments: Addition and In Situ Production of Trace Gases and Oxidants in the Gas Phase
4.1 Introduction
4.2 Injection of Gaseous Compounds
4.3 Injection of Compounds from Liquid Sources
4.4 Injection of Compounds from Solid Sources
4.5 Production of Hydroxyl Radicals (OH)
4.5.1 OH Production from Ozone Photolysis
4.5.2 OH Production from Nitrous Acid Photolysis
4.5.3 Production of OH from Alkyl Nitrite Photolysis
4.5.4 Production of OH from Photolysis of Peroxides
4.5.5 Thermal Decomposition of Pernitric Acid
4.5.6 OH Production from the Ozonolysis of Alkenes
4.5.7 OH Production in the Presence of NOx
4.6 Production of Nitrate Radicals
4.6.1 Production of NO3 from the Gas-Phase Reaction of NO2 and O3
4.6.2 Production of NO3 from the Thermal Decomposition of N2O5
4.7 Production of Cl Radicals
4.8 Production of Ozone
4.8.1 Photochemical Ozone Generation
4.8.2 Ozone Generation by Electrical Discharge
4.9 Using OH Radical Tracers in Simulation Experiments
4.10 Using OH Scavengers in Simulation Experiments
References
5 Preparation of the Experiment: Addition of Particles
5.1 Motivation
5.1.1 Procedure for Generation of Monodispersed Seed Aerosols
5.2 Mineral Dust Aerosol and Its Mineral Constituents
5.2.1 Motivation
5.2.2 Generation of Dust Aerosols from Mechanical Agitation and Vibration Devices
5.2.3 Generation of Dust Aerosols from Fluidization Devices
5.2.4 Generation of Dust Aerosols from Atomization of Liquid Solutions
5.3 Preparation of Soot Particles for Chamber Experiments
5.3.1 Motivation
5.3.2 General Approach
5.3.3 Procedure for Addition of Soot Particles
5.4 Bioaerosols
5.4.1 Motivation
5.4.2 Generation of Bioaerosols from Liquid Solution
5.4.3 Experimental Protocols for Studies on Fungal Spores
5.5 Whole Emissions (Gases and Particles) from Real-World Sources
5.5.1 Motivation
5.5.2 Combustion Sources
5.5.3 Plant Emissions
References
6 Sampling for Offline Analysis
6.1 Gas-Phase Sampling
6.1.1 Cartridge Sampling
6.1.2 Canister Sampling
6.1.3 Bag Sampling
6.1.4 Sorbent Tube Sampling
6.2 Particle Sampling
6.2.1 Filter-Based Particle Collection
6.2.2 Inertial Classifiers
6.2.3 Particle-into-Liquid Sampler
References
7 Analysis of Chamber Data
7.1 Introduction
7.2 Relative Rate Measurements in a Chamber
7.2.1 Introduction
7.2.2 Procedures
7.3 Product Yield Measurements
7.3.1 Introduction
7.3.2 Procedure
7.3.3 Analysis with Product Consumption
7.4 Estimating Secondary Organic Aerosol Yields
7.4.1 Introduction
7.4.2 Particle Wall-Loss Correction Procedure
7.5 New Particle Formation
7.5.1 Determination of Particle Growth Rates (GR)
7.5.2 Particle Formation Rate
7.5.3 Determination of Loss Processes
7.5.4 Ion Formation Rate
7.5.5 Estimation of Errors
7.6 Analysis of Experiments and Application of Chamber-Specific Corrections
7.6.1 Introduction
7.6.2 General Approach
7.6.3 Building a Chamber Box Model
7.7 Use Simulation Chambers for the Assessment of Photocatalytic Material for Air Treatment
7.7.1 Introduction
7.7.2 Photocatalytic Activity Determination Using a Simulation Chamber
7.7.3 Photosmog Studies in the Presence of TiO2-doped Surfaces
7.7.4 Recommendations for the Use of Simulation Chambers in Photocatalysis
References
8 Application of Simulation Chambers to Investigate Interfacial Processes
8.1 Application of Simulation Chambers to the Study of Cloud Processes
8.1.1 Introduction
8.1.2 Design of Expansion-Type Cloud Chambers to Study Cloud Microphysical Processes
8.1.3 Design of a Chamber to Study the Influence of Turbulence onto Cloud Microphysical Processes: LACIS-T
8.1.4 Example of a Simulation Chamber Study on the Influence of Turbulent Saturation Fluctuations on Droplet Formation and Growth
8.1.5 Example of Using a Simulation Chamber as Platform for Instrument Test and Intercomparison
8.2 Application of Simulation Chambers to the Study of Processes at the Air–Sea Interface
8.2.1 Design of a Simulation Chamber Dedicated to Air–Sea Processes Study
8.2.2 Example of a Simulation Chamber Study of a Photosensitized Production of Aerosol at the Air–Sea Interface
8.3 Application of Simulation Chambers to the Study of Cryosphere–Atmosphere Interface
8.3.1 Introduction
8.3.2 Preparation of Synthetic Sea-Ice Growth
8.3.3 Step-by-Step Procedure for Growing Synthetic Sea-Ice
References
9 Conclusions
9.1 Improving the Robustness of the Simulation Chamber Experiments
9.2 Simulating the Complexity of the Real Atmosphere, Working at the Interfaces and Considering Longer Timescale Exposure
9.3 Conclusion
References