Kernenergie: Kraftwerkstypen, Entwicklungen und Risiken

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Die Nachfrage nach fossilen Brennstoffen steigt stetig an. Zugleich produzieren sie in der Stromgestehung aufgrund der Oxidationsprozesse Kohlendioxid, das dann in die Atmosphäre entweicht und dort als Treibhausgas die Wärmestrahlung adsorbiert und remittiert.

Seit geraumer Zeit werden in einigen Ländern neue Kernkraftwerke gebaut. Die weltweite Akzeptanz der Stromerzeugung durch Kernenergie hat durch die Katastrophen von Tschernobyl und Fukushima gelitten, wobei Tschernobyl auf menschliches Versagen beruhte, während die Reaktorblöcke in Fukushima optimal auf Erdbeben ausgelegt waren, nicht aber auf den eines Tsunami. Das Buch fasst den Stand der Technik zusammen, berücksichtigt Beteiligungsprozesse der Öffentlichkeit sowie absehbare Entwicklungen in den Lebensgewohnheiten und politische Vorgaben. 

Author(s): Hartmut Frey
Edition: 1
Publisher: Springer Vieweg
Year: 2021

Language: German
Pages: 447
Tags: Kernenergie;

Inhaltsverzeichnis
1: Einleitung
2: Kernreaktionen
2.1 Grundbegriffe
2.2 Allgemeine Klassifikationen der Kernreaktionen
2.3 Physikalische Grundlagen der Kernenergie
2.3.1 Kernmodelle
2.3.1.1 Radioaktivität
2.3.1.1.1 Alpha-Zerfall (α-Zerfall)
2.3.1.1.2 Betazerfall (ß-Zerfall)
2.3.1.1.3 Gammastrahlung (ɣ-Strahlung)
2.3.2 Durchgang von geladenen Teilchen und ɣ-Quanten durch Materie
2.3.3 Kernreaktionen
2.3.3.1 Grundbegriffe
2.3.3.2 Allgemeine Klassifikation der Kernreaktionen
2.3.3.3 Prinzip der Energieumwandlung
2.3.4 Neutronenausbeute beim Spaltprozess
2.3.4.1 Neutronenfluss und Reaktionsrate
2.3.4.2 Kettenreaktion und kritische Bedingung
2.3.4.3 Moderation der Neutronen
2.3.4.4 Thermisch, epithermische und schnelle Spaltprozesse
2.3.4.5 Homogene und heterogene Anordnungen
2.3.5 Konversion und Brüten
3: Auslegung von Kernreaktoren
3.1 Einleitung
3.2 Transport- und Diffusionsgleichungen für die Neutronenflussdichte
3.2.1 Diffusionsgleichungen für die energieabhängige Neutronenflussverteilung
3.2.2 Neutronenphysikalische Betrachtungen von Materialien
3.2.2.1 Einleitung
3.2.2.2 Mittelung über das thermische Spektrum
3.2.2.3 Der homogene thermische Reaktor (Vierfaktorenformel)
3.2.2.4 Der heterogene thermische Reaktor
3.2.2.5 Numerische Berechnungsmethoden
3.3 Langzeitverhalten von Reaktoren
3.3.1 Der Uran-Plutonium- und der Thorium-Uran-Zyklus
3.3.2 Spaltproduktvergiftung
3.3.2.1 Xenonvergiftung unter stationärem Fluss
3.3.2.2 Xenonaufbau nach dem Abschalten
3.3.2.3 Samariumvergiftung unter stationärem Fluss
3.3.2.4 Samariumaufbau nach dem Abschalten
3.4 Fluss- und Leistungsformfaktor
3.5 Beschickungsmethoden
3.6 Reaktor-Regelung
3.6.1 Reaktivität, Generationsdauer, Reaktorperiode
3.6.1.1 Bor
3.6.1.2 Cadmium
3.6.1.3 Hafnium
3.6.2 Neutronengifte zur Reaktorregelung und Flussglättung
4: Kühlmittel
4.1 Einleitung
4.2 Kerntechnische Eigenschaften
4.2.1 Notwendigkeit geringer Absorption und starker Streuwirkung
4.2.2 Schwache Aktivierung
4.3 Temperaturverlauf im Brennelement
4.3.1 Einführung
4.3.2 Wärmeleitung im zylindrischen Brennelement
4.3.3 Wärmeleitung in einem kugelförmigen Brennelement
4.4 Wärmeleitung in der Brennstoffhülle
4.5 Wärmeübertragung im Spalt zwischen Brennstoff und Hülle
4.6 Axialer Temperaturverlauf im Brennelement und im Kühlmittel
4.7 Kühlmittelströmung
4.7.1 Wärme- und Impulsübertragung
4.7.1.1 Ähnlichkeitsbetrachtung und dimensionslose Kennzahlen
4.7.1.2 Gebrauchsformeln für den Wärmeübergang und den Druckverlust
4.8 Kühlmittelumwälzleistung für einen Kanal
4.9 Radiale Verteilung des Kühlmittelstroms im Reaktor-Core
4.9.1 Umwälzleistung und Netto-Wirkungsgrad
4.10 Fehlerbetrachtung bei der Core-Auslegung
5: Aspekte der Reaktor-Core-Auslegung
5.1 Druckwasserreaktor
5.2 Siedewasserreaktor
5.2.1 Schwerwasserreaktoren (Candu) und (RBMK)
5.3 Gasgekühlter Reaktor
5.3.1 Einführung
5.3.2 Auslegungsprinzipien
5.4 Natriumgekühlte Brutreaktoren
6: Thermodynamische Analyse der Kreisprozesse von Kernkraftwerken
6.1 Einleitung
6.2 Analyse des Clausius-Rankine Prozesses unter Kernkraftwerksbedingungen
6.2.1 Design von Dampferzeugern und Wärmeübertrager
6.2.1.1 Druckwasserreaktor
6.2.1.2 Gasgekühlter Reaktor
6.2.1.3 Natrium gekühlter Reaktor
6.3 Umwälzpumpen
6.3.1 Wassergekühlter Reaktor
6.3.2 Gasgekühlte Reaktoren
6.3.3 Natriumgekühlter Reaktor
6.4 Designkonzepte von Reaktor-Druckbehältern
6.4.1 Druck- und Siedewasserreaktorbehälter
6.4.1.1 Zerstörungsfreie Prüfverfahren
6.4.2 Gasgekühlte Reaktoren
6.4.3 Natriumgekühlte Reaktoren
6.5 Be- und Entladeeinrichtungen
6.5.1 Wassergekühlter Reaktor
6.5.2 Natrium gekühlter Schneller Brüter
6.6 Wirkungsgradanalyse der verschiedenen Reaktortypen
7: Regelsysteme
7.1 Einleitung
7.2 Druckwasserreaktor
7.3 Siedewasserreaktor
7.4 Gasgekühlter Reaktor
7.5 Natrium gekühlter Schneller Brüter
8: Sicherheit von Kernreaktoren
8.1 Einleitung
8.2 Sicherheitskonzepte von Kernreaktortypen
8.2.1 Druckwasserreaktor
8.2.2 Siedewasserreaktor
8.2.3 Gasgekühlter Reaktor
8.2.4 Natriumgekühlter schneller Reaktor
8.3 Analyse des Reaktorcores unter Sicherheitsaspekten
8.3.1 Reaktorcorereaktionen
8.3.1.1 Durchbrechen des Reaktordruckbehälters
8.3.1.2 Wechselwirkungen zwischen Corium und Beton
8.3.1.3 Beispiel für ein Sicherheitssystem
8.3.1.3.1 Karenzzeit
8.3.2 Wahrscheinlichkeitsanalysen
8.4 Biologische Auswirkungen der radioaktiven Strahlung
8.4.1 α-Strahlung
8.4.2 β-Strahlung
8.4.3 γ-Strahlung
8.4.4 Neutronenstrahlung
8.5 Gewebeschädigung
8.5.1 Natürliche Strahlenexposition
8.5.2 Wirkungen einer Strahlenexposition
8.6 Aktivität der Spaltprodukte
8.7 Aktivität des Kühlmittels
9: Abschirmung
9.1 Einleitung
9.2 Neutronenabschirmung
9.2.1 Neutronenquellen
9.2.2 Bestimmung der Neutronenflussverteilung in der Abschirmung
9.3 γ-Strahlen Abschirmung
9.3.1 γ-Strahlungs-Quellen
9.4 Wärmeerzeugung durch Neutronen
9.5 Abschirmwerkstoffe
10: Tendenzen der Weiterentwicklung von Kernreaktoren
10.1 Einleitung
10.2 Flüssigsalzreaktoren, MRS (Molten Salt Reactor)
10.3 Gasgekühltes Höchsttemperatur-Reaktorsystem
10.4 Schneller gasgekühlter Reaktor, GFR (Gas-Cooled Fast Reactor)
10.5 Überkritischer Leichtwasserreaktor, SCWR (Super-Critical Water-Cooled Reactor)
10.6 Schneller natriumgekühlter Reaktor, SFR (Sodium-Cooled Fast Reactor)
10.7 Bleigekühltes schnelles Reaktorsystem (Lead-Cooled Fast ReactorSystem (LFR))
10.8 Neue Kernreaktorkonzepte
10.8.1 Schneller gasgekühlter Reaktor
10.8.2 Höchsttemperatur-Reaktor
10.8.3 Schneller natriumgekühlter Reaktor
10.8.4 Schneller bleigekühlter Reaktor
10.8.5 Reaktoren mit Salzschmelze-Kühlung, MRS (Molten Salt Reactors)
10.9 Zeitpläne und technischer Entwicklungsstand
10.10 Kleinreaktoren
10.10.1 Einleitung
10.10.2 In der Entwicklung befindliche Kleinreaktoren
10.10.2.1 Leichtwasser-Kleinreaktoren
10.10.2.2 Gasgekühlte Hochtemperatur (HTR)-Kleinreaktoren
10.10.2.3 Schnelle Kleinreaktoren
10.10.2.3.1 Schnelle Salzschmelze-Kleinreaktoren
10.10.2.4 Flüssigmetall-gekühlte schnelle Kleinreaktoren
10.11 Einsatz künftiger Reaktorkonzepte
11: Brennstoffkreislauf
11.1 Einführung
11.2 Kernbrennstoff Uran
11.2.1 Tiefbau
11.2.2 Tagebau
11.2.3 Lösungsbergbau
11.2.4 Alternative Urangewinnung
11.2.5 Aufbereitung des Uranerzes
11.2.6 Konversion
11.2.7 Anreicherung
11.2.7.1 Anreicherung durch Gaszentrifugen
11.2.7.2 Diffusionsmethoden
11.2.7.3 Weitere Urananreicherungsmethoden
11.2.8 Urandioxid Brennstoff
11.2.8.1 Herstellung von Brennelementen
11.2.9 Urankarbid-Brennstoff
11.2.10 Metallisches Uran
11.3 Kernbrennstoff Thorium
11.3.1 Thoriumgewinnung
11.4 Kernbrennstoff Plutonium
11.4.1 MOX-Brennstoff
11.5 Brennelemente für gasgekühlte Hochtemperaturreaktoren
11.6 Dispersionsbrennstoffe
11.7 Wiederaufarbeitung
11.7.1 Einleitung
11.7.2 PUREX-Verfahren
11.7.2.1 PUREX-Modifikationen
11.7.3 Pyrochemische Verfahren
11.7.4 Plasmarecycling
11.8 Konzepte für Brennstoffkreisläufe
11.8.1 Offener Brennstoffkreislauf
11.8.1.1 Brennstoffkreislauf mit Natururan
11.8.1.2 Brennstoffkreislauf mit Anreicherung
11.8.1.3 Uran-Thorium-Brennstoffkreislauf
11.8.1.4 Brennstoffkreislauf mit Fluidkernreaktoren
11.8.2 Geschlossener Brennstoffkreislauf
11.8.2.1 Uran-Plutonium-Brennstoffkreislauf mit thermischen Reaktoren
11.8.2.2 Uran-Plutonium-Brennstoffkreislauf mit thermischen Reaktoren ohne Uran-Plutonium-Auftrennung
11.8.2.3 Uran-Plutonium-Brennstoffkreislauf mit Schnellen Reaktoren ohne Uran-Plutonium Auftrennung
11.9 Entsorgung radioaktiver Abfälle
11.9.1 Arten radioaktiver Abfälle
11.9.2 Analyse der Kavernenmaterialien
11.9.3 Legale Entsorgung in Meergewässern
11.9.4 Lagerung unter freiem Himmel
11.9.5 Illegale Entsorgung
11.9.6 Entsorgung ohne genauen Nachweis
11.9.7 Unfälle mit radioaktivem Abfall
11.9.8 Transmutation
11.10 Stilllegung
12: Die Kernkraft-Kontroverse im Spiegel der Öffentlichkeit
12.1 Einleitung
12.2 Diskurs zwischen Experten: Schneller Brüter contra Hochtemperaturreaktor
12.2.1 Reaktorsicherheit: Argument für den Aufbau regenerativer Energiequellen
12.3 Bemerkungen zum Thema Kernenergie